Identification of block-oriented systems in the presence of nonparametric input nonlinearities of switch and backlash types

The problem of identifying Hammerstein-like systems containing dynamic nonlinearities, of the switch or backlash types, is considered. Interestingly, the nonlinearity borders are nonparametric borders (i.e. of unknown structure) and so are allowed to be noninvertible and cross each other. A semi-parametric identification approach is developed to estimate the linear subsystem parameters and m points on both nonlinearity borders. It relies on two main experiments designed so that during each one, the focus is on one lateral border exciting m specific points. Doing so, the initial nonparametric identification problem is decomposed into two simpler problems involving static parametric nonlinearities. The new problems are dealt with independently using least squares type estimators. It is formally shown that the experiments generate persistently exciting signals ensuring the consistency of all involved parameter estimators.

[1]  Z. Hasiewicz,et al.  Nonlinear system identification under various prior knowledge , 2008 .

[2]  Fouad Giri,et al.  Identification of Hammerstein systems in presence of hysteresis-backlash and hysteresis-relay nonlinearities , 2008, Autom..

[3]  G. Phillips Interpolation and Approximation by Polynomials , 2003 .

[4]  Dennis S. Bernstein,et al.  SUBSPACE IDENTIFICATION OF PERIODICALLY SWITCHING HAMMERSTEIN-WIENER MODELS FOR MAGNETOSPHERIC DYNAMICS1 , 2006 .

[5]  Stanley H. Johnson,et al.  Use of Hammerstein Models in Identification of Nonlinear Systems , 1991 .

[6]  Er-Wei Bai,et al.  Identification of linear systems with hard input nonlinearities of known structure , 2002, Autom..

[7]  F. Giri,et al.  Recursive identification of systems with hard input nonlinearities of known structure , 2004, Proceedings of the 2004 American Control Conference.

[8]  Fouad Giri,et al.  Interval-excitation through impulse sequences. A technical lemma , 2002, Autom..

[9]  M. Haloua,et al.  System identification based on Hammerstein model , 2005 .

[10]  Er-Wei Bai,et al.  Convergence of the iterative Hammerstein system identification algorithm , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[11]  Jozef Vörös,et al.  Parameter identification of discontinuous hammerstein systems , 1997, Autom..

[12]  K. Narendra,et al.  An iterative method for the identification of nonlinear systems using a Hammerstein model , 1966 .

[13]  Max Donath,et al.  American Control Conference , 1993 .

[14]  T. Söderström,et al.  Instrumental-variable methods for identification of Hammerstein systems , 1982 .

[15]  Zygmunt Hasiewicz,et al.  Hammerstein system identification by non-parametric instrumental variables , 2009, Int. J. Control.

[16]  Fouad Giri,et al.  HAMMERSTEIN SYSTEMS IDENTIFICATION IN PRESENCE OF HYSTERESIS-BACKLASH NONLINEARITY , 2008 .

[17]  P. Stoica On the convergence of an iterative algorithm used for Hammerstein system identification , 1981 .

[18]  A. Hammerstein Nichtlineare Integralgleichungen nebst Anwendungen , 1930 .

[19]  Fouad Giri,et al.  Parameter identification of a class of Hammerstein plants , 2001, Autom..

[20]  Jungsang Kim,et al.  Digital predistortion of wideband signals based on power amplifier model with memory , 2001 .

[21]  W. Greblicki,et al.  Nonparametric system identification , 2008 .

[22]  Vito Cerone,et al.  Bounding the parameters of linear systems with input backlash , 2007, Proceedings of the 2005, American Control Conference, 2005..