Therapeutic targeting of microRNAs: current status and future challenges

MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs that have crucial roles in regulating gene expression. Increasing evidence supports a role for miRNAs in many human diseases, including cancer and autoimmune disorders. The function of miRNAs can be efficiently and specifically inhibited by chemically modified antisense oligonucleotides, supporting their potential as targets for the development of novel therapies for several diseases. In this Review we summarize our current knowledge of the design and performance of chemically modified miRNA-targeting antisense oligonucleotides, discuss various in vivo delivery strategies and analyse ongoing challenges to ensure the specificity and efficacy of therapeutic oligonucleotides in vivo. Finally, we review current progress on the clinical development of miRNA-targeting therapeutics.

[1]  5. Progress and Possibilities in Forage Crop Improvement 1 , 1927 .

[2]  Robert T. Jimenez Opportunities and obstacles in bilingual reading , 1992 .

[3]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[4]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[5]  P. D. Cook,et al.  Uniformly modified 2'-deoxy-2'-fluoro phosphorothioate oligonucleotides as nuclease-resistant antisense compounds with high affinity and specificity for RNA targets. , 1993, Journal of medicinal chemistry.

[6]  A. Lamond,et al.  Antisense oligonucleotides made of 2'‐O‐alkylRNA: their properties and applications in RNA biochemistry , 1993, FEBS letters.

[7]  S. Agrawal,et al.  Complement activation and hemodynamic changes following intravenous administration of phosphorothioate oligonucleotides in the monkey. , 1994, Antisense research and development.

[8]  P. D. Cook,et al.  Characterization of fully 2'-modified oligoribonucleotide hetero- and homoduplex hybridization and nuclease sensitivity. , 1995, Nucleic acids research.

[9]  W. Novotny,et al.  Inhibition of coagulation by a phosphorothioate oligonucleotide. , 1997, Antisense & nucleic acid drug development.

[10]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[11]  J. Wengel,et al.  LNA (Locked Nucleic Acid): An RNA Mimic Forming Exceedingly Stable LNA:LNA Duplexes , 1998 .

[12]  F. Eckstein,et al.  Modified oligonucleotides: synthesis and strategy for users. , 1998, Annual review of biochemistry.

[13]  Norman C. Nelson,et al.  Advantages of 2'-O-methyl oligoribonucleotide probes for detecting RNA targets. , 1998, Nucleic acids research.

[14]  R. Wagner,et al.  A chemical modification method for the structural analysis of RNA and RNA-protein complexes within living cells. , 1998, Analytical biochemistry.

[15]  Peter E. Nielsen,et al.  LNA (Locked Nucleic Acids): Synthesis and High-Affinity Nucleic Acid Recognition. , 1998 .

[16]  M. Manoharan 2'-carbohydrate modifications in antisense oligonucleotide therapy: importance of conformation, configuration and conjugation. , 1999, Biochimica et biophysica acta.

[17]  V. Ambros,et al.  The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. , 1999, Developmental biology.

[18]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[19]  T. Tuschl,et al.  Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells , 2001, Nature.

[20]  T. Rana,et al.  RNAi in human cells: basic structural and functional features of small interfering RNA. , 2002, Molecular cell.

[21]  P. Couvreur,et al.  Nanoparticles in cancer therapy and diagnosis. , 2002, Advanced drug delivery reviews.

[22]  Michael Petersen,et al.  Locked nucleic acid (LNA) recognition of RNA: NMR solution structures of LNA:RNA hybrids. , 2002, Journal of the American Chemical Society.

[23]  Martin Tabler,et al.  Developmental defects by antisense-mediated inactivation of micro-RNAs 2 and 13 in Drosophila and the identification of putative target genes. , 2003, Nucleic acids research.

[24]  T. Rana,et al.  siRNA function in RNAi: a chemical modification analysis. , 2003, RNA.

[25]  Julius Brennecke,et al.  Identification of Drosophila MicroRNA Targets , 2003, PLoS biology.

[26]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[27]  Thomas Tuschl,et al.  Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. , 2004, RNA.

[28]  C. Croce,et al.  Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Phillip D Zamore,et al.  Sequence-Specific Inhibition of Small RNA Function , 2004, PLoS biology.

[30]  R. Schiffelers,et al.  Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. , 2004, Nucleic acids research.

[31]  Matthias John,et al.  Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs , 2004, Nature.

[32]  R. Shiekhattar,et al.  The Microprocessor complex mediates the genesis of microRNAs , 2004, Nature.

[33]  L. Brannon-Peppas,et al.  Nanoparticle and targeted systems for cancer therapy. , 2004, Advanced drug delivery reviews.

[34]  D. Weissman,et al.  Small Interfering RNAs Mediate Sequence-Independent Gene Suppression and Induce Immune Activation by Signaling through Toll-Like Receptor 31 , 2004, The Journal of Immunology.

[35]  Y. Yatabe,et al.  Reduced Expression of the let-7 MicroRNAs in Human Lung Cancers in Association with Shortened Postoperative Survival , 2004, Cancer Research.

[36]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[37]  C. Croce,et al.  MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Shizuo Akira,et al.  Innate Antiviral Responses by Means of TLR7-Mediated Recognition of Single-Stranded RNA , 2004, Science.

[39]  S. Akira,et al.  Species-Specific Recognition of Single-Stranded RNA via Toll-like Receptor 7 and 8 , 2004, Science.

[40]  F. Slack,et al.  RAS Is Regulated by the let-7 MicroRNA Family , 2005, Cell.

[41]  Kristin C. Gunsalus,et al.  microRNA Target Predictions across Seven Drosophila Species and Comparison to Mammalian Targets , 2005, PLoS Comput. Biol..

[42]  B. Polisky,et al.  Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication , 2005, Hepatology.

[43]  R. Shiekhattar,et al.  TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing , 2005, Nature.

[44]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[45]  Judy Lieberman,et al.  Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors , 2005, Nature Biotechnology.

[46]  S. Akira,et al.  Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7 , 2005, Nature Medicine.

[47]  J. Yates,et al.  A role for the P-body component GW182 in microRNA function , 2005, Nature Cell Biology.

[48]  K. Kosik,et al.  MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. , 2005, Cancer research.

[49]  W. Filipowicz,et al.  Inhibition of Translational Initiation by Let-7 MicroRNA in Human Cells , 2005, Science.

[50]  Keith Bowman,et al.  Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs , 2005, Nature Biotechnology.

[51]  A. Judge,et al.  Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA , 2005, Nature Biotechnology.

[52]  A. Pasquinelli,et al.  Regulation by let-7 and lin-4 miRNAs Results in Target mRNA Degradation , 2005, Cell.

[53]  Mark E. Davis,et al.  Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. , 2005, Cancer research.

[54]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[55]  P. Sarnow,et al.  Modulation of Hepatitis C Virus RNA Abundance by a Liver-Specific MicroRNA , 2005, Science.

[56]  S. Freier,et al.  Improved targeting of miRNA with antisense oligonucleotides , 2006, Nucleic acids research.

[57]  T. Rana,et al.  Translation Repression in Human Cells by MicroRNA-Induced Gene Silencing Requires RCK/p54 , 2006, PLoS biology.

[58]  C. Croce,et al.  A microRNA expression signature of human solid tumors defines cancer gene targets , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Mihaela Zavolan,et al.  Inference of miRNA targets using evolutionary conservation and pathway analysis , 2007, BMC Bioinformatics.

[60]  P. Bork,et al.  mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. , 2006, Genes & development.

[61]  M. Manoharan,et al.  RNAi therapeutics: a potential new class of pharmaceutical drugs , 2006, Nature chemical biology.

[62]  Mark Graham,et al.  miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. , 2006, Cell metabolism.

[63]  Matthias John,et al.  RNAi-mediated gene silencing in non-human primates , 2006, Nature.

[64]  J. Lieberman,et al.  An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection , 2006, Nature.

[65]  Jerry Pelletier,et al.  Short RNAs repress translation after initiation in mammalian cells. , 2006, Molecular cell.

[66]  Priti Kumar,et al.  A Single siRNA Suppresses Fatal Encephalitis Induced by Two Different Flaviviruses , 2006, PLoS medicine.

[67]  S. Kauppinen,et al.  LNA-modified oligonucleotides mediate specific inhibition of microRNA function. , 2006, Gene.

[68]  J. Lieberman,et al.  let-7 Regulates Self Renewal and Tumorigenicity of Breast Cancer Cells , 2007, Cell.

[69]  Xiaoxia Qi,et al.  Control of Stress-Dependent Cardiac Growth and Gene Expression by a MicroRNA , 2007, Science.

[70]  Mark E. Davis,et al.  Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA , 2007, Proceedings of the National Academy of Sciences.

[71]  B. Monia,et al.  Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals , 2006, Nucleic acids research.

[72]  Johan T den Dunnen,et al.  Local dystrophin restoration with antisense oligonucleotide PRO051. , 2007, The New England journal of medicine.

[73]  David P. Bartel,et al.  Supporting Online Material Materials and Methods Fig. S1 Tables S1 and S2 References Database S1 Disrupting the Pairing between Let-7 and Hmga2 Enhances Oncogenic Transformation , 2022 .

[74]  Tariq M Rana,et al.  Design and creation of new nanomaterials for therapeutic RNAi. , 2007, ACS chemical biology.

[75]  Wigard P Kloosterman,et al.  Targeted Inhibition of miRNA Maturation with Morpholinos Reveals a Role for miR-375 in Pancreatic Islet Development , 2007, PLoS biology.

[76]  F. Slack,et al.  The let-7 microRNA represses cell proliferation pathways in human cells. , 2007, Cancer research.

[77]  Shuomin Zhu,et al.  MicroRNA-21 Targets the Tumor Suppressor Gene Tropomyosin 1 (TPM1)* , 2007, Journal of Biological Chemistry.

[78]  M. Stoffel,et al.  Mechanisms and optimization of in vivo delivery of lipophilic siRNAs , 2007, Nature Biotechnology.

[79]  J. Steitz,et al.  Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR , 2007, Proceedings of the National Academy of Sciences.

[80]  T Takahashi,et al.  Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92 , 2007, Oncogene.

[81]  W. Qin,et al.  Targeted inhibition of HBV gene expression by single‐chain antibody mediated small interfering RNA delivery , 2007, Hepatology.

[82]  K. Ghoshal,et al.  MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. , 2007, Gastroenterology.

[83]  Margaret S. Ebert,et al.  MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells , 2007, Nature Methods.

[84]  Justine R. Smith,et al.  Sequence- and target-independent angiogenesis suppression by siRNA via TLR3 , 2008, Nature.

[85]  D. Peer,et al.  Systemic Leukocyte-Directed siRNA Delivery Revealing Cyclin D1 as an Anti-Inflammatory Target , 2008, Science.

[86]  C. Joo,et al.  Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. , 2008, Molecular cell.

[87]  H. Mizusawa,et al.  Efficient In Vivo Delivery of siRNA to the Liver by Conjugation of α-Tocopherol. , 2008, Molecular therapy : the journal of the American Society of Gene Therapy.

[88]  Robert Langer,et al.  A combinatorial library of lipid-like materials for delivery of RNAi therapeutics , 2008, Nature Biotechnology.

[89]  C. Croce,et al.  MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma , 2008, Oncogene.

[90]  A. Krogh,et al.  Programmed Cell Death 4 (PDCD4) Is an Important Functional Target of the MicroRNA miR-21 in Breast Cancer Cells* , 2008, Journal of Biological Chemistry.

[91]  F. Slack,et al.  The let-7 microRNA reduces tumor growth in mouse models of lung cancer , 2008, Cell cycle.

[92]  A. Silahtaroglu,et al.  Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver , 2007, Nucleic acids research.

[93]  C. Esau,et al.  Inhibition of microRNA with antisense oligonucleotides. , 2008, Methods.

[94]  Alice Shapiro,et al.  MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. , 2008, Cancer research.

[95]  H. Allgayer,et al.  MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer , 2008, Oncogene.

[96]  W. Rottbauer,et al.  MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts , 2008, Nature.

[97]  Qihong Huang,et al.  Small-molecule inhibitors of microrna miR-21 function. , 2008, Angewandte Chemie.

[98]  P. Graves,et al.  Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. , 2008, The Biochemical journal.

[99]  W. Theurkauf,et al.  Biogenesis and germline functions of piRNAs , 2007, Development.

[100]  S. Kauppinen,et al.  LNA-mediated microRNA silencing in non-human primates , 2008, Nature.

[101]  E. Izaurralde,et al.  GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay , 2008, Nature Structural &Molecular Biology.

[102]  H. Mizusawa,et al.  Efficient in vivo delivery of siRNA to the liver by conjugation of alpha-tocopherol. , 2008, Molecular therapy : the journal of the American Society of Gene Therapy.

[103]  Rudolf Jaenisch,et al.  Targeted Deletion Reveals Essential and Overlapping Functions of the miR-17∼92 Family of miRNA Clusters , 2008, Cell.

[104]  Phillip A Sharp,et al.  Suppression of non-small cell lung tumor development by the let-7 microRNA family , 2008, Proceedings of the National Academy of Sciences.

[105]  Mark E. Davis,et al.  Nanoparticle therapeutics: an emerging treatment modality for cancer , 2008, Nature Reviews Drug Discovery.

[106]  Z. Weng,et al.  Endogenous siRNAs Derived from Transposons and mRNAs in Drosophila Somatic Cells , 2008, Science.

[107]  C. Croce Causes and consequences of microRNA dysregulation in cancer , 2009, Nature Reviews Genetics.

[108]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[109]  D. Haussler,et al.  Posttranscriptional Crossregulation between Drosha and DGCR8 , 2009, Cell.

[110]  Hua Yu,et al.  In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses , 2009, Nature Biotechnology.

[111]  Gian Luca Grazi,et al.  MicroRNA-221 Targets Bmf in Hepatocellular Carcinoma and Correlates with Tumor Multifocality , 2009, Clinical Cancer Research.

[112]  R. Gregory,et al.  Post-transcriptional control of DGCR8 expression by the Microprocessor. , 2009, RNA.

[113]  M. Tankersley,et al.  T Cell-Specific siRNA Delivery Suppresses HIV-1 Infection in Humanized Mice , 2009, Pediatrics.

[114]  Oliver Hofmann,et al.  miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements. , 2009, Molecular cell.

[115]  Z. Paroo,et al.  Phosphorylation of the Human MicroRNA-Generating Complex Mediates MAPK/Erk Signaling , 2009, Cell.

[116]  R. Geary Antisense oligonucleotide pharmacokinetics and metabolism. , 2009, Expert opinion on drug metabolism & toxicology.

[117]  Carla Oliveira,et al.  A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function , 2009, Nature Genetics.

[118]  S. Lowe,et al.  miR-221 overexpression contributes to liver tumorigenesis , 2009, Proceedings of the National Academy of Sciences.

[119]  Marilena Loizidou,et al.  Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. , 2009, Trends in pharmacological sciences.

[120]  K. G. Rajeev,et al.  Targeted Delivery of RNAi Therapeutics With Endogenous and Exogenous Ligand-Based Mechanisms. , 2010, Molecular therapy : the journal of the American Society of Gene Therapy.

[121]  M. Behlke,et al.  A Direct Comparison of Anti-microRNA Oligonucleotide Potency , 2010, Pharmaceutical Research.

[122]  Mark E. Davis,et al.  Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles , 2010, Nature.

[123]  C. Bennett,et al.  RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. , 2010, Annual review of pharmacology and toxicology.

[124]  S. Akira,et al.  The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors , 2010, Nature Immunology.

[125]  D. Weigel,et al.  Transcriptional Control of Gene Expression by MicroRNAs , 2010, Cell.

[126]  W. Filipowicz,et al.  The widespread regulation of microRNA biogenesis, function and decay , 2010, Nature Reviews Genetics.

[127]  C. Croce,et al.  Targeting microRNAs in cancer: rationale, strategies and challenges , 2010, Nature Reviews Drug Discovery.

[128]  Douglas D Young,et al.  Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma. , 2010, Journal of the American Chemical Society.

[129]  Frank Speleman,et al.  miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis , 2010, Nature Cell Biology.

[130]  Phillip A Sharp,et al.  MicroRNA sponges: progress and possibilities. , 2010, RNA.

[131]  Robert A. Weinberg,et al.  Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model , 2010, Nature Biotechnology.

[132]  Nicholas T. Ingolia,et al.  Mammalian microRNAs predominantly act to decrease target mRNA levels , 2010, Nature.

[133]  M. Caligiuri,et al.  miR-328 Functions as an RNA Decoy to Modulate hnRNP E2 Regulation of mRNA Translation in Leukemic Blasts , 2010, Cell.

[134]  Ryan M. O’Connell,et al.  Physiological and pathological roles for microRNAs in the immune system , 2010, Nature Reviews Immunology.

[135]  S. Hammond,et al.  PRO-051, an antisense oligonucleotide for the potential treatment of Duchenne muscular dystrophy. , 2010, Current opinion in molecular therapeutics.

[136]  S. Kauppinen,et al.  Therapeutic Silencing of MicroRNA-122 in Primates with Chronic Hepatitis C Virus Infection , 2010, Science.

[137]  Thomas D. Schmittgen,et al.  miR-221 silencing blocks hepatocellular carcinoma and promotes survival. , 2011, Cancer research.

[138]  J. Stenvang,et al.  Silencing of microRNA families by seed-targeting tiny LNAs , 2011, Nature Genetics.

[139]  S. Mitragotri,et al.  Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer , 2011, Proceedings of the National Academy of Sciences.

[140]  M. Zavolan,et al.  MicroRNAs 103 and 107 regulate insulin sensitivity , 2011, Nature.

[141]  C. Croce,et al.  microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer , 2011, Oncogene.

[142]  M. Behlke,et al.  Chemical modification and design of anti-miRNA oligonucleotides , 2011, Gene Therapy.

[143]  Zhonghan Li,et al.  Small RNA-mediated regulation of iPS cell generation , 2011, The EMBO journal.

[144]  G. Dorn,et al.  miR-15 Family Regulates Postnatal Mitotic Arrest of Cardiomyocytes , 2011, Circulation research.

[145]  T. Rana,et al.  Silencing microRNA by interfering nanoparticles in mice , 2011, Nucleic acids research.

[146]  Marion Jurk,et al.  Immunostimulatory potential of silencing RNAs can be mediated by a non-uridine-rich toll-like receptor 7 motif. , 2011, Nucleic acid therapeutics.

[147]  Yang Shi,et al.  Hypoxia Potentiates MicroRNA-Mediated Gene Silencing through Posttranslational Modification of Argonaute2 , 2011, Molecular and Cellular Biology.

[148]  Ferdinando Di Cunto,et al.  Coding-Independent Regulation of the Tumor Suppressor PTEN by Competing Endogenous mRNAs , 2011, Cell.

[149]  E. Olson,et al.  Therapeutic Inhibition of miR-208a Improves Cardiac Function and Survival During Heart Failure , 2011, Circulation.

[150]  D. Cacchiarelli,et al.  A Long Noncoding RNA Controls Muscle Differentiation by Functioning as a Competing Endogenous RNA , 2011, Cell.

[151]  Thomas Tuschl,et al.  miRNAs in human cancer , 2011, The Journal of pathology.

[152]  P. Pandolfi,et al.  In Vivo Identification of Tumor- Suppressive PTEN ceRNAs in an Oncogenic BRAF-Induced Mouse Model of Melanoma , 2011, Cell.

[153]  B. Ramratnam,et al.  Glycogen Synthase Kinase 3 Beta (GSK3β) Phosphorylates the RNAase III Enzyme Drosha at S300 and S302 , 2011, PloS one.

[154]  O. Elemento,et al.  Comprehensive Analysis of mRNA Methylation Reveals Enrichment in 3′ UTRs and near Stop Codons , 2012, Cell.

[155]  Robert Persson,et al.  A locked nucleic acid oligonucleotide targeting microRNA 122 is well-tolerated in cynomolgus monkeys. , 2012, Nucleic acid therapeutics.

[156]  Aaron N. Chang,et al.  MicroRNA-21 Promotes Fibrosis of the Kidney by Silencing Metabolic Pathways , 2012, Science Translational Medicine.

[157]  Jing Liu,et al.  Single-Stranded RNAs Use RNAi to Potently and Allele-Selectively Inhibit Mutant Huntingtin Expression , 2012, Cell.

[158]  E. Olson,et al.  Inhibition of miR-15 Protects Against Cardiac Ischemic Injury , 2012, Circulation research.

[159]  J. Kreeger,et al.  Chemical modification study of antisense gapmers. , 2012, Nucleic acid therapeutics.

[160]  A. Pasquinelli,et al.  Auto-regulation of miRNA biogenesis by let-7 and Argonaute , 2012, Nature.

[161]  이혁진 Molecularly Self-Assembled Nucleic Acid Nanoparticles for Targeted In Vivo siRNA Delivery , 2012 .

[162]  Y. Hua,et al.  Synthetic oligonucleotides recruit ILF2/3 to RNA transcripts to modulate splicing. , 2012, Nature chemical biology.

[163]  E. Olson,et al.  MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles , 2012, Nature Reviews Drug Discovery.

[164]  Jun Wang,et al.  Targeted Delivery of PLK1-siRNA by ScFv Suppresses Her2+ Breast Cancer Growth and Metastasis , 2012, Science Translational Medicine.

[165]  C. Croce,et al.  MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review , 2012, EMBO molecular medicine.

[166]  Rakesh K Jain,et al.  Delivery of molecular and cellular medicine to solid tumors. , 1997, Advanced drug delivery reviews.

[167]  Zhonghan Li,et al.  Molecular Mechanisms of RNA-Triggered Gene Silencing Machineries , 2012, Accounts of chemical research.

[168]  S. Kauppinen,et al.  Discovering the first microRNA-targeted drug , 2012, The Journal of cell biology.

[169]  Diana C. Canseco,et al.  Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family , 2012, Proceedings of the National Academy of Sciences.

[170]  M. Behlke,et al.  Improved Performance of Anti-miRNA Oligonucleotides Using a Novel Non-Nucleotide Modifier , 2013, Molecular therapy. Nucleic acids.

[171]  Hai Qi,et al.  MicroRNAs of the miR-17~92 family are critical regulators of TFH differentiation , 2013, Nature Immunology.

[172]  Cristian Loretelli,et al.  From pseudo-ceRNAs to circ-ceRNAs: a tale of cross-talk and competition , 2013, Nature Structural &Molecular Biology.

[173]  A. Bouchie First microRNA mimic enters clinic , 2013, Nature Biotechnology.

[174]  Sarah Seifert,et al.  Image-based analysis of lipid nanoparticle–mediated siRNA delivery, intracellular trafficking and endosomal escape , 2013, Nature Biotechnology.

[175]  A. Burdick,et al.  Comparison of hepatic transcription profiles of locked ribonucleic acid antisense oligonucleotides: evidence of distinct pathways contributing to non-target mediated toxicity in mice. , 2014, Toxicological sciences : an official journal of the Society of Toxicology.