Pyridine–Urea-Based Anion Receptor: Formation of Cyclic Sulfate–Water Hexamer and Dihydrogen Phosphate–Water Trimer in Hydrophobic Environment

A pyridine–urea-based receptor is found to stabilize cyclic sulfate–water hexamer [(SO4)2–(H2O)4]n4– and dihydrogen phosphate–water trimer [(H2PO4)2–H2O]n2– within its hydrophobic environment upon ...

[1]  G. Das,et al.  Structural insight into the anion–water cluster: stabilised by alcohol and carboxylic acid containing tripodal ligand , 2014 .

[2]  S. Chakraborty,et al.  Encapsulation of [X2(H2O)4]2- (X = F/Cl) clusters by pyridyl terminated tripodal amide receptor in aqueous medium: single crystal X-ray structural evidence. , 2014, Dalton transactions.

[3]  A. Rajbanshi,et al.  Dihydrogen Phosphate Clusters: Trapping H2PO4– Tetramers and Hexamers in Urea-Functionalized Molecular Crystals , 2013 .

[4]  G. Das,et al.  Encapsulation of a discrete cyclic halide water tetramer [X2(H2O)2]2-, X = Cl-/Br- within a dimeric capsular assembly of a tripodal amide receptor. , 2013, Chemical communications.

[5]  K. Rissanen,et al.  Highlights on contemporary recognition and sensing of fluoride anion in solution and in the solid state. , 2013, Chemical Society reviews.

[6]  Zesheng Li,et al.  Intermolecular vibration coupling between libration of water and ν2-SOH for Clusters HSO4(-)(H2O)n. , 2012, The journal of physical chemistry. B.

[7]  N. Guchhait,et al.  Reduced Schiff-base assisted novel dihydrogenphosphate–water polymer , 2012 .

[8]  G. Das,et al.  Charge-Assisted Complexation of Anions of Different Dimensionality by Benzimidazole-Based Receptors Bearing -OH Functionality , 2012 .

[9]  G. Das,et al.  Cyclic Pentameric Puckered Hybrid Chloride–Water Cluster [Cl3(H2O)4]3– in the Hydrophobic Architecture , 2012 .

[10]  V. Day,et al.  Supramolecular encapsulation of tetrahedrally hydrated guests in a tetrahedron host. , 2012, Angewandte Chemie.

[11]  D. Neumark,et al.  Vibrational spectroscopy of microhydrated conjugate base anions. , 2012, Accounts of chemical research.

[12]  J. Sessler,et al.  Artificial receptors for the recognition of phosphorylated molecules. , 2011, Chemical reviews.

[13]  M. Head‐Gordon,et al.  Exploring the rich energy landscape of sulfate-water clusters SO4(2-) (H2O)(n=3-7): an electronic structure approach. , 2011, The journal of physical chemistry. A.

[14]  H. Khavasi,et al.  Discrete Cubane-like Bromide−Water Cluster , 2011 .

[15]  V. Lippolis,et al.  Tailoring cyclic polyamines for inorganic/organic phosphate binding. , 2010, Chemical Society reviews.

[16]  M. F. Bush,et al.  Sulfate ion patterns water at long distance. , 2010, Journal of the American Chemical Society.

[17]  Biao Wu,et al.  A flexible bis(pyridylcarbamate) anion receptor: binding of infinite double-stranded phosphate, [-sulfate-(H2O)2-]n, and hydrogen-bridged helical perchlorate chain , 2009 .

[18]  K. Rissanen,et al.  Recognition and sensing of fluoride anion. , 2009, Chemical communications.

[19]  M. Hursthouse,et al.  The comparison of fac and mer ruthenium(ii) trischelate complexes in anion binding. , 2009, Dalton transactions.

[20]  F. Gabbaï,et al.  Fluoride ion recognition by chelating and cationic boranes. , 2009, Accounts of chemical research.

[21]  T. Lu,et al.  Anion Dependent Water Clusters Encapsulated Inside a Cryptand Cavity , 2008 .

[22]  Amitava Das,et al.  Rugby-ball-shaped sulfate-water-sulfate adduct encapsulated in a neutral molecular receptor capsule. , 2007, Inorganic chemistry.

[23]  D. Macmillan,et al.  Influence of soil type and extraction conditions on perchlorate analysis by ion chromatography. , 2007, Chemosphere.

[24]  M. F. Bush,et al.  Evidence for water rings in the hexahydrated sulfate dianion from IR spectroscopy. , 2007, Journal of the American Chemical Society.

[25]  F. Diederich,et al.  Phosphate recognition in structural biology. , 2007, Angewandte Chemie.

[26]  V. Lynch,et al.  Diindolylquinoxalines: effective indole-based receptors for phosphate anion. , 2006, Journal of the American Chemical Society.

[27]  D. Neumark,et al.  Infrared spectroscopy of hydrated sulfate dianions. , 2006, The Journal of chemical physics.

[28]  E. Monzani,et al.  Chiral receptors for phosphate ions. , 2005, Organic & biomolecular chemistry.

[29]  Paul A Dawson,et al.  NaSi-1 and Sat-1: structure, function and transcriptional regulation of two genes encoding renal proximal tubular sulfate transporters. , 2005, The international journal of biochemistry & cell biology.

[30]  Franz Hofmeister,et al.  Zur Lehre von der Wirkung der Salze , 1891, Archiv für experimentelle Pathologie und Pharmakologie.

[31]  Gregg J. Lumetta,et al.  The Problem With Anions In the Doe Complex , 2004 .

[32]  V. Ramanathan,et al.  Aerosols, Climate, and the Hydrological Cycle , 2001, Science.

[33]  Leonard J. Barbour,et al.  An intermolecular (H2O)10 cluster in a solid-state supramolecular complex , 1998, Nature.

[34]  E J Dodson,et al.  Peptide binding in OppA, the crystal structures of the periplasmic oligopeptide binding protein in the unliganded form and in complex with lysyllysine. , 1997, Biochemistry.

[35]  J. Atwood,et al.  Molecular Recognition of the Cyclic Water Trimer in the Solid State , 1997 .

[36]  W Baumeister,et al.  Hyperthermostable surface layer protein tetrabrachion from the archaebacterium Staphylothermus marinus: evidence for the presence of a right-handed coiled coil derived from the primary structure. , 1996, Journal of molecular biology.

[37]  F. Quiocho,et al.  Sulphate sequestered in the sulphate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds , 1985, Nature.

[38]  F. Pino,et al.  Derivatives of carbohydrazide, thiocarbohydrazide and diaminoguanidine as photometric analytical reagents. IV , 1984 .