Estimation of the signal-to-noise in the linear regression model

In the present paper estimators of the signal-to-noise are given. A simulation study is conducted in order to see how the proposed estimators perform relative to the naive estimator by way of scalar risk comparison. The results favour our suggested estimators.

[1]  M. E. Muller,et al.  A Note on the Generation of Random Normal Deviates , 1958 .

[2]  R. W. Farebrother,et al.  Further Results on the Mean Square Error of Ridge Regression , 1976 .

[3]  Lawrence S. Mayer,et al.  On Biased Estimation in Linear Models , 1973 .

[4]  R. Snee,et al.  Ridge Regression in Practice , 1975 .

[5]  J. Wolfowitz,et al.  Introduction to the Theory of Statistics. , 1951 .

[6]  A. E. Hoerl,et al.  Ridge Regression: Applications to Nonorthogonal Problems , 1970 .

[7]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[8]  D. Gibbons A Simulation Study of Some Ridge Estimators , 1981 .

[9]  J. M. Price Comparisons among regression estimators under the generalized mean square error criterion , 1982 .

[10]  A note on non-negative estimators of positive parameters , 1970 .

[11]  Götz Trenkler Biased estimators in the linear regression model , 1981 .

[12]  G. Trenkler,et al.  Nonnegative Minimum Biased Quadratic Estimation in the Linear Regression Models , 1995 .

[13]  On the expected length of the least squares coefficient vector , 1980 .

[14]  Gilbert A. Churchill,et al.  A Comparison of Ridge Estimators , 1978 .

[15]  Donald W. Marquaridt Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation , 1970 .

[16]  G. C. McDonald,et al.  A Monte Carlo Evaluation of Some Ridge-Type Estimators , 1975 .

[17]  E. Liski A test of the mean square error criterion for shrinkage estimators , 1982 .