Mathematical and physical aspects of complex symmetric operators

Recent advances in the theory of complex symmetric operators are presented and related to current studies in non-Hermitian quantum mechanics. The main themes of the survey are: the structure of complex symmetric operators, C-selfadjoint extensions of C-symmetric unbounded operators, resolvent estimates, reality of spectrum, bases of C-orthonormal vectors and conjugate-linear symmetric operators. The main results are complemented by a variety of natural examples arising in field theory, quantum physics and complex variables.

[1]  D. Crothers,et al.  Unitarization of complex symmetric matrices , 1994 .

[2]  G. Papadopoulos,et al.  Spinorial geometry, horizons and superconformal symmetry in six dimensions , 2014, 1404.3976.

[3]  U. Riss EXTENSION OF THE HILBERT SPACE BY J-UNITARY TRANSFORMATIONS , 1998 .

[4]  J. Neumann,et al.  Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren , 1930 .

[5]  S. Albeverio,et al.  Pseudo-Hermiticity and Theory of Singular Perturbations , 2004 .

[6]  L. Rosenfeld,et al.  Theory of nuclear reactions: I. Resonant states and collision matrix , 1961 .

[7]  R. Tateo,et al.  The ODE/IM correspondence , 2001, hep-th/0703066.

[8]  K. Friedrichs,et al.  On the wave function renormalization in a simple model , 1962 .

[9]  Léon Autonne,et al.  Sur les matrices hypohermitiennes et sur les matrices unitaires , 1915 .

[10]  THE NORM AND MODULUS OF A FOGUEL OPERATOR , 2009, 0908.0479.

[11]  Nicholas J. Higham,et al.  Factorizing complex symmetric matrices with positive definite real and imaginary parts , 1998, Math. Comput..

[12]  Louis Boutet de Monvel,et al.  Hypoelliptic operators with double characteristics and related pseudo-differential operators , 2010 .

[13]  Peter Arbenz,et al.  On solving complex-symmetric eigenvalue problems arising in the design of axisymmetric VCSEL devices , 2008 .

[14]  C. Bender,et al.  Quantum physics with non-Hermitian operators , 2012 .

[15]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[16]  Menahem Schiffer,et al.  The Fredholm eigen values of plane domains. , 1957 .

[17]  Peter Arbenz,et al.  A Jacobi-Davidson Method for Solving Complex Symmetric Eigenvalue Problems , 2004, SIAM J. Sci. Comput..

[18]  Fabio Bagarello,et al.  Nonlinear pseudo-bosons versus hidden Hermiticity: II. The case of unbounded operators , 2012, 1202.2028.

[19]  N. Moiseyev,et al.  Non-Hermitian Quantum Mechanics: Frontmatter , 2011 .

[20]  L. Hörmander Fourier integral operators. I , 1995 .

[21]  Barry Simon,et al.  The definition of molecular resonance curves by the method of exterior complex scaling , 1979 .

[22]  L. Trefethen Spectra and pseudospectra , 2005 .

[23]  F. R. Gantmakher The Theory of Matrices , 1984 .

[24]  E. Davies,et al.  Pseudo–spectra, the harmonic oscillator and complex resonances , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[25]  J. Lee,et al.  On complex symmetric operator matrices , 2013 .

[26]  Alan George,et al.  On the growth factor in Gaussian elimination for generalized Higham matrices , 2002, Numer. Linear Algebra Appl..

[27]  P. Arbenz,et al.  A Jacobi-Davidson method for solving complex-symmetric Eigenvalue problems , 2002 .

[28]  N. Sedlock Algebras of truncated Toeplitz operators , 2010, 1011.3425.

[29]  On a J-polar decomposition of a bounded operator and matrix representations of J-symmetric, J-skew-symmetric operators , 2009, 0910.2599.

[30]  Fragile PT-symmetry in a solvable model , 2004, math-ph/0403033.

[31]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[32]  F. Gesztesy,et al.  J -self-adjointness of a class of Dirac-type operators , 2004, math/0403491.

[33]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[34]  N. Sedlock Properties of truncated Toeplitz operators , 2010 .

[35]  Jeffrey Danciger,et al.  A min–max theorem for complex symmetric matrices , 2006 .

[36]  M. Putinar,et al.  Interpolation and Complex Symmetry , 2008 .

[37]  T. Azizov,et al.  Linear Operators in Spaces with an Indefinite Metric , 1989 .

[38]  Stephen A. Vavasis,et al.  An Iterative Method for Solving Complex-Symmetric Systems Arising in Electrical Power Modeling , 2005, SIAM J. Matrix Anal. Appl..

[39]  M. Nikolenko,et al.  Translated from Russian by , 2008 .

[40]  Brice M. Nguelifack,et al.  Unitary similarity to a complex symmetric matrix and its extension to orthogonal symmetric Lie algebras , 2013 .

[41]  J-self-adjoint operators with \mathcal{C} -symmetries: an extension theory approach , 2008, 0811.0365.

[42]  K. Friedrichs On certain inequalities and characteristic value problems for analytic functions and for functions of two variables , 1937 .

[43]  J. Lee,et al.  On scalar extensions and spectral decompositions of complex symmetric operators , 2011 .

[44]  SEN ZHU,et al.  COMPLEX SYMMETRIC WEIGHTED SHIFTS , 2012 .

[45]  M. Putinar,et al.  Variational principles for symmetric bilinear forms , 2008 .

[46]  S. Garcia Conjugation and Clark Operators , 2006 .

[47]  Stephan Ramon Garcia,et al.  Complex symmetric partial isometries , 2009 .

[48]  S. Garcia Approximate antilinear eigenvalue problems and related inequalities , 2008 .

[49]  Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum , 2001, math-ph/0110016.

[50]  Teiji Takagi,et al.  On an Algebraic Problem Reluted to an Analytic Theorem of Carathéodory and Fejér and on an Allied Theorem of Landau , 1924 .

[51]  Peter D. Lax,et al.  Symmetrizable linear transformations , 1954 .

[52]  J. Killingbeck,et al.  A simple method for complex eigenvalues , 2004 .

[53]  J. Sjöstrand,et al.  symmetric non-self-adjoint operators, diagonalizable and non-diagonalizable, with a real discrete spectrum , 2007 .

[54]  S. Garcia,et al.  Unitary equivalence to a complex symmetric matrix: geometric criteria , 2009, 0907.2728.

[55]  Ilan Bar-On,et al.  Fast Diagonalization of Large and Dense Complex Symmetric Matrices, with Applications to Quantum Reaction Dynamics , 1997, SIAM J. Sci. Comput..

[56]  J. Cima,et al.  Truncated Toeplitz Operators on Finite Dimensional Spaces , 2008 .

[57]  An algorithm for approximating the singular triplets of complex symmetric matrices , 1997 .

[58]  Quantum inner-product metrics via the recurrent solution of the Dieudonné equation , 2012, 1201.2263.

[59]  Remarks on the Structure of Complex Symmetric Operators , 2007 .

[60]  N. Jacobson,et al.  Normal Semi-Linear Transformations , 1939 .

[61]  C. E. Reid,et al.  On a theorem for complex symmetric matrices and its relevance in the study of decay phenomena , 1989 .

[62]  Nikolai Nikolski,et al.  Operators, Functions, and Systems: An Easy Reading , 2002 .

[63]  V. Peller Hankel Operators and Their Applications , 2003, IEEE Transactions on Automatic Control.

[64]  Peter Lancaster,et al.  Inverse Spectral Problems for Semisimple Damped Vibrating Systems , 2007, SIAM J. Matrix Anal. Appl..

[65]  C. W. McCurdy,et al.  Extension of the method of complex basis functions to molecular resonances , 1978 .

[66]  Kai Cieliebak,et al.  Symplectic Geometry , 1992, New Spaces in Physics.

[67]  W. Arendt,et al.  Perspectives in operator theory , 2007 .

[68]  M. Hayes,et al.  Bivectors and waves in mechanics and optics , 1993 .

[69]  F. Murray Linear transformations in _{},>1 , 1936 .

[70]  J. Sjöstrand,et al.  On the eigenvalues of a class of hypoelliptic operators , 1978 .

[71]  Sen Zhu,et al.  The class of complex symmetric operators is not norm closed , 2012 .

[72]  THE CHARACTERISTIC FUNCTION OF A COMPLEX SYMMETRIC CONTRACTION , 2006, math/0604199.

[73]  S. Albeverio,et al.  One-dimensional Schrödinger operators with -symmetric zero-range potentials , 2005 .

[74]  Ein Satz Ueber Quadratische Formen Mit Komplexen Koeffizienten , 1945 .

[75]  D. Sarason Algebraic properties of truncated Toeplitz operators , 2007 .

[76]  G. M. Graf,et al.  The Real Spectrum of the Imaginary Cubic Oscillator: An Expository Proof , 2013, 1310.7767.

[77]  P. Nordlander,et al.  Energies and lifetimes of xenon Rydberg states near a metal surface , 2000 .

[78]  H. Landau Moments in mathematics , 1987 .

[79]  J. D. Cloizeaux,et al.  Energy Bands and Projection Operators in a Crystal: Analytic and Asymptotic Properties , 1964 .

[80]  I. Knowles On the boundary conditions characterizing J-selfadjoint extensions of J-symmetric operators , 1981 .

[81]  Marko Huhtanen,et al.  Real Linear Operator Theory and its Applications , 2011 .

[82]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[83]  J. Combes,et al.  A class of analytic perturbations for one-body Schrödinger Hamiltonians , 1971 .

[84]  M. Putinar,et al.  Spectral Decompositions and Analytic Sheaves , 1996 .

[85]  Roland W. Freund,et al.  Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices , 1992, SIAM J. Sci. Comput..

[86]  Taras Krokhmalskii,et al.  Exact results for spatial decay of the one-body density matrix in low-dimensional insulators , 2004 .

[87]  A. Galindo On the existence of J‐selfadjoint extensions of J‐symmetric operators with adjoint , 1962 .

[88]  C. Bender,et al.  Unbounded -symmetries and their nonuniqueness , 2012, 1207.1176.

[89]  Carl M. Bender,et al.  Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.

[90]  J. Sjöstrand Analytic wavefront sets and operators with multiple characteristics , 1983 .

[91]  河東 泰之,et al.  A.Connes:Noncommutative Geometry , 1997 .

[92]  A. Mostafazadeh Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian , 2001, math-ph/0107001.

[93]  J. Cima,et al.  Truncated Toeplitz Operators: Spatial Isomorphism, Unitary Equivalence, and Similarity , 2009, 0907.2489.

[94]  Erkki J. Brändas Complex symmetric forms and the emergence of Jordan blocks in analytically extended quantum theory , 2009, Int. J. Comput. Math..

[95]  S. Reitzinger,et al.  Algebraic multigrid for complex symmetric matrices and applications , 2003 .

[96]  J. D. Cloizeaux Analytical Properties of n-Dimensional Energy Bands and Wannier Functions , 1964 .

[97]  L. Hörmander,et al.  On the existence and the regularity of solutions of linear pseudo-differential equations , 1971 .

[98]  Emil Prodan,et al.  Norm estimates of complex symmetric operators applied to quantum systems , 2005 .

[99]  Unitary equivalence to a complex symmetric matrix: Low dimensions , 2011, 1104.4960.

[100]  Marcin Paprzycki,et al.  High performance solution of the complex symmetric eigenproblem , 2004, Numerical Algorithms.

[101]  F. Cannata,et al.  Exactly Solvable Non-Separable and Non-Diagonalizable 2-Dim Model with Quadratic Complex Interaction , 2009, 0910.0590.

[102]  V. Bargmann On a Hilbert space of analytic functions and an associated integral transform part I , 1961 .

[103]  Marco Budinich,et al.  A Spinorial Formulation of the Maximum Clique Problem of a Graph , 2006, ArXiv.

[104]  S. Albeverio,et al.  J-self-adjoint operators with -symmetries: an extension theory approach , 2008, 0811.0365.

[105]  M. Schiffer Fredholm eigenvalues and Grunsky matrices , 1981 .

[106]  Kristian Kirsch,et al.  Methods Of Modern Mathematical Physics , 2016 .

[107]  F. Scholtz,et al.  Quasi-Hermitian operators in quantum mechanics and the variational principle , 1992 .

[108]  A. Singh Quantum dynamical semigroups involving separable and entangled states , 2011, 1201.0250.

[109]  A. Böttcher,et al.  Introduction to Large Truncated Toeplitz Matrices , 1998 .

[110]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[111]  Means of unitaries, conjugations, and the Friedrichs operator , 2007 .

[112]  On the Similarity of Sturm–Liouville Operators with Non-Hermitian Boundary Conditions to Self-Adjoint and Normal Operators , 2011, 1108.4946.

[113]  Walter Kohn,et al.  Analytic Properties of Bloch Waves and Wannier Functions , 1959 .

[114]  Complex symmetric weighted shifts , 2012 .

[115]  S. Kuzhel,et al.  On elements of the Lax–Phillips scattering scheme for -symmetric operators , 2012, 1202.1537.

[116]  ON AN EXTREMAL PROBLEM OF GARCIA AND ROSS , 2009 .

[117]  D. Vanderbilt,et al.  Exponential decay properties of Wannier functions and related quantities. , 2001, Physical review letters.

[118]  O. Kechkin,et al.  Symplectic gravity models in four, three and two dimensions , 1998 .

[119]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[120]  Stephan Ramon Garcia,et al.  Some new classes of complex symmetric operators , 2009, 0907.3761.

[121]  Stephan Ramon Garcia,et al.  Complex Symmetric Operators and Applications II , 2005 .

[122]  Marko Huhtanen,et al.  Numerical solution of the R-linear Beltrami equation , 2012, Math. Comput..

[123]  W. Kohn,et al.  Nearsightedness of electronic matter. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[124]  Sibasish Ghosh,et al.  INVARIANTS FOR MAXIMALLY ENTANGLED VECTORS AND UNITARY BASES , 2013, 1401.0099.

[125]  L. Trefethen,et al.  Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .

[126]  Ali Mostafazadeh,et al.  Pseudo-Hermitian Representation of Quantum Mechanics , 2008, 0810.5643.

[127]  Barry Simon,et al.  Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.

[128]  Leiba Rodman,et al.  Review: T. Ya. Azizov and I. S. Iokhvidov, Linear operators in spaces with an indefinite metric , 1991 .

[129]  D. Krejčiřík,et al.  -symmetric models in curved manifolds , 2010, 1001.2988.

[130]  C. Bender,et al.  PT symmetry and necessary and sufficient conditions for the reality of energy eigenvalues , 2009, 0902.1365.

[131]  H. Shapiro,et al.  Poincaré’s Variational Problem in Potential Theory , 2007 .

[132]  James E. Tener Unitary equivalence to a complex symmetric matrix: An algorithm , 2008, 0908.2201.

[133]  Federico Perotti,et al.  On the Numerical Solution of (λ2 A + λ B + C), x = b and Application to Structural Dynamics , 2001, SIAM J. Sci. Comput..

[134]  J. Lee,et al.  On local spectral properties of complex symmetric operators , 2011 .

[135]  Miloslav Znojil,et al.  Three-Hilbert-Space Formulation of Quantum Mechanics , 2009, 0901.0700.

[136]  N. Moiseyev,et al.  Non-Hermitian Quantum Mechanics , 2011 .

[137]  Andrew Y. T. Leung Subspace iteration for complex symmetric eigenproblems , 1995 .

[138]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[139]  D. Krejčiřík Calculation of the metric in the Hilbert space of a -symmetric model via the spectral theorem , 2007, 0707.1781.

[140]  W. Ross,et al.  A Non-Linear Extremal Problem on the Hardy Space , 2009 .

[141]  Marko Huhtanen,et al.  Orthogonal polynomials of the R-linear generalized minimal residual method , 2013, J. Approx. Theory.

[142]  Khakim D. Ikramov,et al.  Bounding the growth factor in Gaussian elimination for Buckley's class of complex symmetric matrices , 2000, Numer. Linear Algebra Appl..

[143]  Richard M. Timoney,et al.  Recent Advances in Operator-Related Function Theory , 2006 .

[144]  Raphael Henry Spectral instability for even non-selfadjoint anharmonic oscillators , 2013, 1301.5327.

[145]  D. Krejčiřík,et al.  The Pauli equation with complex boundary conditions , 2012, 1203.5011.

[146]  UNITARY EQUIVALENCE OF A MATRIX TO ITS TRANSPOSE , 2009, 0908.2107.

[147]  Loo-Keng Hua,et al.  On the Theory of Automorphic Functions of a Matrix Variable I-Geometrical Basis , 1944 .

[148]  O. Nevanlinna,et al.  Real linear matrix analysis , 2007 .

[149]  V. A. Prokhorov,et al.  Compact Hankel Forms on Planar Domains , 2009 .

[150]  Gene H. Golub,et al.  On the convergence of line iterative methods for cyclically reduced non-symmetrizable linear systems , 1992 .

[151]  Sohrab Ismail-Beigi,et al.  LOCALITY OF THE DENSITY MATRIX IN METALS, SEMICONDUCTORS, AND INSULATORS , 1999 .

[152]  M. Hitrik,et al.  Quadratic -symmetric operators with real spectrum and similarity to self-adjoint operators , 2012, 1204.6605.

[153]  Santtu Ruotsalainen On a Weyl-von Neumann -type Theorem for Antilinear Self-adjoint Operators , 2012, 1203.4670.

[154]  L. Ahlfors,et al.  Remarks on the Neumann-Poincaré integral equation , 1952 .

[155]  W. Ross,et al.  Recent Progress on Truncated Toeplitz Operators , 2011, 1108.1858.

[156]  Andrey B. Kucherov,et al.  Bounding the growth factor in Gaussian elimination for Buckley's class of complex symmetric matrices , 2000 .

[157]  Closed formula for the metric in the Hilbert space of a -symmetric model , 2006, math-ph/0604055.

[158]  Teiji Takagi,et al.  On an Algebraic Problem Related to an Analytic Theorem of Carathéodory and Fdjér and on an Allied Theorem of Landau , 1924 .

[159]  Barry Simon,et al.  Resonances in n-Body Quantum Systems With Dilatation Analytic Potentials and the Foundations of Time-Dependent Perturbation Theory , 1973 .

[160]  Issei Fujishiro,et al.  The eigenvalue problem for infinite compact complex symmetric matrices with application to the numerical computation of complex zeros of J0(z) - iJ1(z) and of Bessel functions Jm(z) of any real order m , 1993 .

[161]  Joseph A. Ball,et al.  Recent advances in matrix and operator theory , 2008 .

[162]  M. Kreĭn,et al.  Introduction to the theory of linear nonselfadjoint operators , 1969 .

[163]  I. M. Glazman Direct methods of qualitative spectral analysis of singular differential operators , 1965 .

[164]  H. Langer,et al.  A Krein Space Approach to PT-symmetry , 2004 .

[165]  M. Krein Compact linear operators on functional spaces with two norms , 1998 .

[166]  Benjamin Graille,et al.  Projected Iterative Algorithms for Complex Symmetric Systems Arising in Magnetized Multicomponent Transport , 2009 .

[167]  A. Mostafazadeh Pseudo-Hermiticity versus PT-symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries , 2002, math-ph/0203005.

[168]  Valeria Simoncini,et al.  An algorithm for approximating the singular triplets of complex symmetric matrices , 1997, Numer. Linear Algebra Appl..

[169]  S. Zagorodnyuk On a J-polar decomposition of a bounded operator and matrices of J-symmetric and J-skew-symmetric operators , 2010 .

[170]  C. Bender,et al.  PT-symmetric quantum mechanics , 1998, 2312.17386.

[171]  Ba Di Ya,et al.  Matrix Analysis , 2011 .

[172]  Timo Eirola,et al.  Solution Methods for R-Linear Problems in Cn , 2003, SIAM J. Matrix Anal. Appl..

[173]  Thomas N. Rescigno,et al.  TOPICAL REVIEW: Solving the three-body Coulomb breakup problem using exterior complex scaling , 2004 .

[174]  Raphael Henry Spectral Projections of the Complex Cubic Oscillator , 2013, 1310.4629.

[175]  E. D. Prunelé,et al.  Conditions for bound states in a periodic linear chain, and the spectra of a class of Toeplitz operators in terms of polylogarithm functions , 2003 .

[176]  J. Schauder,et al.  Potentialtheoretische Untersuchungen , 1931 .

[177]  D. Race The theory of J-selfadjoint extensions of J-symmetric operators , 1985 .

[178]  Barry Simon,et al.  Orthogonal polynomials on the unit circle. Part 1 , 2005 .

[179]  S. Garcia The Eigenstructure of Complex Symmetric Operators , 2007 .