Mathematical and physical aspects of complex symmetric operators
暂无分享,去创建一个
[1] D. Crothers,et al. Unitarization of complex symmetric matrices , 1994 .
[2] G. Papadopoulos,et al. Spinorial geometry, horizons and superconformal symmetry in six dimensions , 2014, 1404.3976.
[3] U. Riss. EXTENSION OF THE HILBERT SPACE BY J-UNITARY TRANSFORMATIONS , 1998 .
[4] J. Neumann,et al. Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren , 1930 .
[5] S. Albeverio,et al. Pseudo-Hermiticity and Theory of Singular Perturbations , 2004 .
[6] L. Rosenfeld,et al. Theory of nuclear reactions: I. Resonant states and collision matrix , 1961 .
[7] R. Tateo,et al. The ODE/IM correspondence , 2001, hep-th/0703066.
[8] K. Friedrichs,et al. On the wave function renormalization in a simple model , 1962 .
[9] Léon Autonne,et al. Sur les matrices hypohermitiennes et sur les matrices unitaires , 1915 .
[10] THE NORM AND MODULUS OF A FOGUEL OPERATOR , 2009, 0908.0479.
[11] Nicholas J. Higham,et al. Factorizing complex symmetric matrices with positive definite real and imaginary parts , 1998, Math. Comput..
[12] Louis Boutet de Monvel,et al. Hypoelliptic operators with double characteristics and related pseudo-differential operators , 2010 .
[13] Peter Arbenz,et al. On solving complex-symmetric eigenvalue problems arising in the design of axisymmetric VCSEL devices , 2008 .
[14] C. Bender,et al. Quantum physics with non-Hermitian operators , 2012 .
[15] Andrew Lesniewski,et al. Noncommutative Geometry , 1997 .
[16] Menahem Schiffer,et al. The Fredholm eigen values of plane domains. , 1957 .
[17] Peter Arbenz,et al. A Jacobi-Davidson Method for Solving Complex Symmetric Eigenvalue Problems , 2004, SIAM J. Sci. Comput..
[18] Fabio Bagarello,et al. Nonlinear pseudo-bosons versus hidden Hermiticity: II. The case of unbounded operators , 2012, 1202.2028.
[19] N. Moiseyev,et al. Non-Hermitian Quantum Mechanics: Frontmatter , 2011 .
[20] L. Hörmander. Fourier integral operators. I , 1995 .
[21] Barry Simon,et al. The definition of molecular resonance curves by the method of exterior complex scaling , 1979 .
[22] L. Trefethen. Spectra and pseudospectra , 2005 .
[23] F. R. Gantmakher. The Theory of Matrices , 1984 .
[24] E. Davies,et al. Pseudo–spectra, the harmonic oscillator and complex resonances , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[25] J. Lee,et al. On complex symmetric operator matrices , 2013 .
[26] Alan George,et al. On the growth factor in Gaussian elimination for generalized Higham matrices , 2002, Numer. Linear Algebra Appl..
[27] P. Arbenz,et al. A Jacobi-Davidson method for solving complex-symmetric Eigenvalue problems , 2002 .
[28] N. Sedlock. Algebras of truncated Toeplitz operators , 2010, 1011.3425.
[29] On a J-polar decomposition of a bounded operator and matrix representations of J-symmetric, J-skew-symmetric operators , 2009, 0910.2599.
[30] Fragile PT-symmetry in a solvable model , 2004, math-ph/0403033.
[31] C. Bender,et al. Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.
[32] F. Gesztesy,et al. J -self-adjointness of a class of Dirac-type operators , 2004, math/0403491.
[33] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[34] N. Sedlock. Properties of truncated Toeplitz operators , 2010 .
[35] Jeffrey Danciger,et al. A min–max theorem for complex symmetric matrices , 2006 .
[36] M. Putinar,et al. Interpolation and Complex Symmetry , 2008 .
[37] T. Azizov,et al. Linear Operators in Spaces with an Indefinite Metric , 1989 .
[38] Stephen A. Vavasis,et al. An Iterative Method for Solving Complex-Symmetric Systems Arising in Electrical Power Modeling , 2005, SIAM J. Matrix Anal. Appl..
[39] M. Nikolenko,et al. Translated from Russian by , 2008 .
[40] Brice M. Nguelifack,et al. Unitary similarity to a complex symmetric matrix and its extension to orthogonal symmetric Lie algebras , 2013 .
[41] J-self-adjoint operators with \mathcal{C} -symmetries: an extension theory approach , 2008, 0811.0365.
[42] K. Friedrichs. On certain inequalities and characteristic value problems for analytic functions and for functions of two variables , 1937 .
[43] J. Lee,et al. On scalar extensions and spectral decompositions of complex symmetric operators , 2011 .
[44] SEN ZHU,et al. COMPLEX SYMMETRIC WEIGHTED SHIFTS , 2012 .
[45] M. Putinar,et al. Variational principles for symmetric bilinear forms , 2008 .
[46] S. Garcia. Conjugation and Clark Operators , 2006 .
[47] Stephan Ramon Garcia,et al. Complex symmetric partial isometries , 2009 .
[48] S. Garcia. Approximate antilinear eigenvalue problems and related inequalities , 2008 .
[49] Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum , 2001, math-ph/0110016.
[50] Teiji Takagi,et al. On an Algebraic Problem Reluted to an Analytic Theorem of Carathéodory and Fejér and on an Allied Theorem of Landau , 1924 .
[51] Peter D. Lax,et al. Symmetrizable linear transformations , 1954 .
[52] J. Killingbeck,et al. A simple method for complex eigenvalues , 2004 .
[53] J. Sjöstrand,et al. symmetric non-self-adjoint operators, diagonalizable and non-diagonalizable, with a real discrete spectrum , 2007 .
[54] S. Garcia,et al. Unitary equivalence to a complex symmetric matrix: geometric criteria , 2009, 0907.2728.
[55] Ilan Bar-On,et al. Fast Diagonalization of Large and Dense Complex Symmetric Matrices, with Applications to Quantum Reaction Dynamics , 1997, SIAM J. Sci. Comput..
[56] J. Cima,et al. Truncated Toeplitz Operators on Finite Dimensional Spaces , 2008 .
[57] An algorithm for approximating the singular triplets of complex symmetric matrices , 1997 .
[58] Quantum inner-product metrics via the recurrent solution of the Dieudonné equation , 2012, 1201.2263.
[59] Remarks on the Structure of Complex Symmetric Operators , 2007 .
[60] N. Jacobson,et al. Normal Semi-Linear Transformations , 1939 .
[61] C. E. Reid,et al. On a theorem for complex symmetric matrices and its relevance in the study of decay phenomena , 1989 .
[62] Nikolai Nikolski,et al. Operators, Functions, and Systems: An Easy Reading , 2002 .
[63] V. Peller. Hankel Operators and Their Applications , 2003, IEEE Transactions on Automatic Control.
[64] Peter Lancaster,et al. Inverse Spectral Problems for Semisimple Damped Vibrating Systems , 2007, SIAM J. Matrix Anal. Appl..
[65] C. W. McCurdy,et al. Extension of the method of complex basis functions to molecular resonances , 1978 .
[66] Kai Cieliebak,et al. Symplectic Geometry , 1992, New Spaces in Physics.
[67] W. Arendt,et al. Perspectives in operator theory , 2007 .
[68] M. Hayes,et al. Bivectors and waves in mechanics and optics , 1993 .
[69] F. Murray. Linear transformations in _{},>1 , 1936 .
[70] J. Sjöstrand,et al. On the eigenvalues of a class of hypoelliptic operators , 1978 .
[71] Sen Zhu,et al. The class of complex symmetric operators is not norm closed , 2012 .
[72] THE CHARACTERISTIC FUNCTION OF A COMPLEX SYMMETRIC CONTRACTION , 2006, math/0604199.
[73] S. Albeverio,et al. One-dimensional Schrödinger operators with -symmetric zero-range potentials , 2005 .
[74] Ein Satz Ueber Quadratische Formen Mit Komplexen Koeffizienten , 1945 .
[75] D. Sarason. Algebraic properties of truncated Toeplitz operators , 2007 .
[76] G. M. Graf,et al. The Real Spectrum of the Imaginary Cubic Oscillator: An Expository Proof , 2013, 1310.7767.
[77] P. Nordlander,et al. Energies and lifetimes of xenon Rydberg states near a metal surface , 2000 .
[78] H. Landau. Moments in mathematics , 1987 .
[79] J. D. Cloizeaux,et al. Energy Bands and Projection Operators in a Crystal: Analytic and Asymptotic Properties , 1964 .
[80] I. Knowles. On the boundary conditions characterizing J-selfadjoint extensions of J-symmetric operators , 1981 .
[81] Marko Huhtanen,et al. Real Linear Operator Theory and its Applications , 2011 .
[82] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[83] J. Combes,et al. A class of analytic perturbations for one-body Schrödinger Hamiltonians , 1971 .
[84] M. Putinar,et al. Spectral Decompositions and Analytic Sheaves , 1996 .
[85] Roland W. Freund,et al. Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices , 1992, SIAM J. Sci. Comput..
[86] Taras Krokhmalskii,et al. Exact results for spatial decay of the one-body density matrix in low-dimensional insulators , 2004 .
[87] A. Galindo. On the existence of J‐selfadjoint extensions of J‐symmetric operators with adjoint , 1962 .
[88] C. Bender,et al. Unbounded -symmetries and their nonuniqueness , 2012, 1207.1176.
[89] Carl M. Bender,et al. Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.
[90] J. Sjöstrand. Analytic wavefront sets and operators with multiple characteristics , 1983 .
[91] 河東 泰之,et al. A.Connes:Noncommutative Geometry , 1997 .
[92] A. Mostafazadeh. Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian , 2001, math-ph/0107001.
[93] J. Cima,et al. Truncated Toeplitz Operators: Spatial Isomorphism, Unitary Equivalence, and Similarity , 2009, 0907.2489.
[94] Erkki J. Brändas. Complex symmetric forms and the emergence of Jordan blocks in analytically extended quantum theory , 2009, Int. J. Comput. Math..
[95] S. Reitzinger,et al. Algebraic multigrid for complex symmetric matrices and applications , 2003 .
[96] J. D. Cloizeaux. Analytical Properties of n-Dimensional Energy Bands and Wannier Functions , 1964 .
[97] L. Hörmander,et al. On the existence and the regularity of solutions of linear pseudo-differential equations , 1971 .
[98] Emil Prodan,et al. Norm estimates of complex symmetric operators applied to quantum systems , 2005 .
[99] Unitary equivalence to a complex symmetric matrix: Low dimensions , 2011, 1104.4960.
[100] Marcin Paprzycki,et al. High performance solution of the complex symmetric eigenproblem , 2004, Numerical Algorithms.
[101] F. Cannata,et al. Exactly Solvable Non-Separable and Non-Diagonalizable 2-Dim Model with Quadratic Complex Interaction , 2009, 0910.0590.
[102] V. Bargmann. On a Hilbert space of analytic functions and an associated integral transform part I , 1961 .
[103] Marco Budinich,et al. A Spinorial Formulation of the Maximum Clique Problem of a Graph , 2006, ArXiv.
[104] S. Albeverio,et al. J-self-adjoint operators with -symmetries: an extension theory approach , 2008, 0811.0365.
[105] M. Schiffer. Fredholm eigenvalues and Grunsky matrices , 1981 .
[106] Kristian Kirsch,et al. Methods Of Modern Mathematical Physics , 2016 .
[107] F. Scholtz,et al. Quasi-Hermitian operators in quantum mechanics and the variational principle , 1992 .
[108] A. Singh. Quantum dynamical semigroups involving separable and entangled states , 2011, 1201.0250.
[109] A. Böttcher,et al. Introduction to Large Truncated Toeplitz Matrices , 1998 .
[110] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[111] Means of unitaries, conjugations, and the Friedrichs operator , 2007 .
[112] On the Similarity of Sturm–Liouville Operators with Non-Hermitian Boundary Conditions to Self-Adjoint and Normal Operators , 2011, 1108.4946.
[113] Walter Kohn,et al. Analytic Properties of Bloch Waves and Wannier Functions , 1959 .
[114] Complex symmetric weighted shifts , 2012 .
[115] S. Kuzhel,et al. On elements of the Lax–Phillips scattering scheme for -symmetric operators , 2012, 1202.1537.
[116] ON AN EXTREMAL PROBLEM OF GARCIA AND ROSS , 2009 .
[117] D. Vanderbilt,et al. Exponential decay properties of Wannier functions and related quantities. , 2001, Physical review letters.
[118] O. Kechkin,et al. Symplectic gravity models in four, three and two dimensions , 1998 .
[119] M. Reed. Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .
[120] Stephan Ramon Garcia,et al. Some new classes of complex symmetric operators , 2009, 0907.3761.
[121] Stephan Ramon Garcia,et al. Complex Symmetric Operators and Applications II , 2005 .
[122] Marko Huhtanen,et al. Numerical solution of the R-linear Beltrami equation , 2012, Math. Comput..
[123] W. Kohn,et al. Nearsightedness of electronic matter. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[124] Sibasish Ghosh,et al. INVARIANTS FOR MAXIMALLY ENTANGLED VECTORS AND UNITARY BASES , 2013, 1401.0099.
[125] L. Trefethen,et al. Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .
[126] Ali Mostafazadeh,et al. Pseudo-Hermitian Representation of Quantum Mechanics , 2008, 0810.5643.
[127] Barry Simon,et al. Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.
[128] Leiba Rodman,et al. Review: T. Ya. Azizov and I. S. Iokhvidov, Linear operators in spaces with an indefinite metric , 1991 .
[129] D. Krejčiřík,et al. -symmetric models in curved manifolds , 2010, 1001.2988.
[130] C. Bender,et al. PT symmetry and necessary and sufficient conditions for the reality of energy eigenvalues , 2009, 0902.1365.
[131] H. Shapiro,et al. Poincaré’s Variational Problem in Potential Theory , 2007 .
[132] James E. Tener. Unitary equivalence to a complex symmetric matrix: An algorithm , 2008, 0908.2201.
[133] Federico Perotti,et al. On the Numerical Solution of (λ2 A + λ B + C), x = b and Application to Structural Dynamics , 2001, SIAM J. Sci. Comput..
[134] J. Lee,et al. On local spectral properties of complex symmetric operators , 2011 .
[135] Miloslav Znojil,et al. Three-Hilbert-Space Formulation of Quantum Mechanics , 2009, 0901.0700.
[136] N. Moiseyev,et al. Non-Hermitian Quantum Mechanics , 2011 .
[137] Andrew Y. T. Leung. Subspace iteration for complex symmetric eigenproblems , 1995 .
[138] L. Hörmander. The analysis of linear partial differential operators , 1990 .
[139] D. Krejčiřík. Calculation of the metric in the Hilbert space of a -symmetric model via the spectral theorem , 2007, 0707.1781.
[140] W. Ross,et al. A Non-Linear Extremal Problem on the Hardy Space , 2009 .
[141] Marko Huhtanen,et al. Orthogonal polynomials of the R-linear generalized minimal residual method , 2013, J. Approx. Theory.
[142] Khakim D. Ikramov,et al. Bounding the growth factor in Gaussian elimination for Buckley's class of complex symmetric matrices , 2000, Numer. Linear Algebra Appl..
[143] Richard M. Timoney,et al. Recent Advances in Operator-Related Function Theory , 2006 .
[144] Raphael Henry. Spectral instability for even non-selfadjoint anharmonic oscillators , 2013, 1301.5327.
[145] D. Krejčiřík,et al. The Pauli equation with complex boundary conditions , 2012, 1203.5011.
[146] UNITARY EQUIVALENCE OF A MATRIX TO ITS TRANSPOSE , 2009, 0908.2107.
[147] Loo-Keng Hua,et al. On the Theory of Automorphic Functions of a Matrix Variable I-Geometrical Basis , 1944 .
[148] O. Nevanlinna,et al. Real linear matrix analysis , 2007 .
[149] V. A. Prokhorov,et al. Compact Hankel Forms on Planar Domains , 2009 .
[150] Gene H. Golub,et al. On the convergence of line iterative methods for cyclically reduced non-symmetrizable linear systems , 1992 .
[151] Sohrab Ismail-Beigi,et al. LOCALITY OF THE DENSITY MATRIX IN METALS, SEMICONDUCTORS, AND INSULATORS , 1999 .
[152] M. Hitrik,et al. Quadratic -symmetric operators with real spectrum and similarity to self-adjoint operators , 2012, 1204.6605.
[153] Santtu Ruotsalainen. On a Weyl-von Neumann -type Theorem for Antilinear Self-adjoint Operators , 2012, 1203.4670.
[154] L. Ahlfors,et al. Remarks on the Neumann-Poincaré integral equation , 1952 .
[155] W. Ross,et al. Recent Progress on Truncated Toeplitz Operators , 2011, 1108.1858.
[156] Andrey B. Kucherov,et al. Bounding the growth factor in Gaussian elimination for Buckley's class of complex symmetric matrices , 2000 .
[157] Closed formula for the metric in the Hilbert space of a -symmetric model , 2006, math-ph/0604055.
[158] Teiji Takagi,et al. On an Algebraic Problem Related to an Analytic Theorem of Carathéodory and Fdjér and on an Allied Theorem of Landau , 1924 .
[159] Barry Simon,et al. Resonances in n-Body Quantum Systems With Dilatation Analytic Potentials and the Foundations of Time-Dependent Perturbation Theory , 1973 .
[160] Issei Fujishiro,et al. The eigenvalue problem for infinite compact complex symmetric matrices with application to the numerical computation of complex zeros of J0(z) - iJ1(z) and of Bessel functions Jm(z) of any real order m , 1993 .
[161] Joseph A. Ball,et al. Recent advances in matrix and operator theory , 2008 .
[162] M. Kreĭn,et al. Introduction to the theory of linear nonselfadjoint operators , 1969 .
[163] I. M. Glazman. Direct methods of qualitative spectral analysis of singular differential operators , 1965 .
[164] H. Langer,et al. A Krein Space Approach to PT-symmetry , 2004 .
[165] M. Krein. Compact linear operators on functional spaces with two norms , 1998 .
[166] Benjamin Graille,et al. Projected Iterative Algorithms for Complex Symmetric Systems Arising in Magnetized Multicomponent Transport , 2009 .
[167] A. Mostafazadeh. Pseudo-Hermiticity versus PT-symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries , 2002, math-ph/0203005.
[168] Valeria Simoncini,et al. An algorithm for approximating the singular triplets of complex symmetric matrices , 1997, Numer. Linear Algebra Appl..
[169] S. Zagorodnyuk. On a J-polar decomposition of a bounded operator and matrices of J-symmetric and J-skew-symmetric operators , 2010 .
[170] C. Bender,et al. PT-symmetric quantum mechanics , 1998, 2312.17386.
[171] Ba Di Ya,et al. Matrix Analysis , 2011 .
[172] Timo Eirola,et al. Solution Methods for R-Linear Problems in Cn , 2003, SIAM J. Matrix Anal. Appl..
[173] Thomas N. Rescigno,et al. TOPICAL REVIEW: Solving the three-body Coulomb breakup problem using exterior complex scaling , 2004 .
[174] Raphael Henry. Spectral Projections of the Complex Cubic Oscillator , 2013, 1310.4629.
[175] E. D. Prunelé,et al. Conditions for bound states in a periodic linear chain, and the spectra of a class of Toeplitz operators in terms of polylogarithm functions , 2003 .
[176] J. Schauder,et al. Potentialtheoretische Untersuchungen , 1931 .
[177] D. Race. The theory of J-selfadjoint extensions of J-symmetric operators , 1985 .
[178] Barry Simon,et al. Orthogonal polynomials on the unit circle. Part 1 , 2005 .
[179] S. Garcia. The Eigenstructure of Complex Symmetric Operators , 2007 .