Computation of irregularly oscillating integrals

[1]  L. Filon III.—On a Quadrature Formula for Trigonometric Integrals. , 1930 .

[2]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[3]  P. Wynn,et al.  On the Convergence and Stability of the Epsilon Algorithm , 1966 .

[4]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[5]  David A. Smith,et al.  Acceleration of linear and logarithmic convergence , 1979 .

[6]  Avram Sidi,et al.  Extrapolation Methods for Oscillatory Infinite Integrals , 1980 .

[7]  Avram Sidi,et al.  The numerical evaluation of very oscillatory infinite integrals by extrapolation , 1982 .

[8]  David Levin,et al.  Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations , 1982 .

[9]  G. Phillips,et al.  Aitken acceleration of some alternating series , 1984 .

[10]  J. N. Lyness Integrating some infinite oscillating tails , 1985 .

[11]  James N. Lyness,et al.  Algorithm 639: To integrate some infinite oscillating tails , 1986, TOMS.

[12]  Tatsuo Torii,et al.  Indefinite integration of oscillatory functions by the Chebyshev series expansion , 1987 .

[13]  Ulf Torsten Ehrenmark,et al.  A three-point formula for numerical quadrature of oscillatory integrals with variable frequency , 1988 .

[14]  Stephen Wolfram,et al.  Mathematica: a system for doing mathematics by computer (2nd ed.) , 1991 .

[15]  Avram Sidi,et al.  A user-friendly extrapolation method for oscillatory infinite integrals , 1988 .

[16]  U. T. Ehrenmark,et al.  A note on an extension of extrapolative techniques for a class of infinite oscillatory integrals , 1990 .

[17]  Claude Brezinski,et al.  Extrapolation methods - theory and practice , 1993, Studies in computational mathematics.

[18]  G. Evans,et al.  Two robust methods for irregular oscillatory integrals over a finite range , 1994 .

[19]  John P. Boyd,et al.  A lag-averaged generalization of Euler's method for accelerating series , 1995 .