Review of 3D CFD modeling of flow and mass transfer in narrow spacer-filled channels in membrane modules

The robustness, reliability and efficiency of modern numerical methods for obtaining solutions to flow problems have given rise to the adoption of Computational Fluid Dynamics (CFD) as a widely used analysis tool for membrane separation systems. In the past decade, many two-dimensional (2D) flow studies employing CFD have been published. Three-dimensional (3D) solutions are also slowly emerging. This paper reviews recent research utilizing 3D CFD models to simulate the flow conditions in narrow spacer-filled channels, such as those encountered in Spiral Wound Membrane (SWM) modules. Many of these studies have focused on optimizing spacer geometric parameters, while others have attempted to gain a better understanding of the mechanisms giving rise to mass transfer enhancement. Applications of 3D CFD to complex spacer geometries and multiple ionic component diffusion are also discussed.

[1]  G. S. Patterson,et al.  Numerical Simulation of Three-Dimensional Homogeneous Isotropic Turbulence , 1972 .

[2]  Dianne E. Wiley,et al.  Novel spacer design improves observed flux , 2004 .

[3]  In Seok Kang,et al.  The effect of turbulence promoters on mass transfer—numerical analysis and flow visualization , 1982 .

[4]  Peter Harriott,et al.  Unit Operations of Chemical Engineering , 2004 .

[5]  Thomas K. Sherwood,et al.  Desalination by Reverse Osmosis , 1967 .

[6]  James Clerk Maxwell,et al.  IV. On the dynamical theory of gases , 1868, Philosophical Transactions of the Royal Society of London.

[7]  Jae Min Hyun,et al.  Analyses of three-dimensional flow calculations in a driven cavity , 1990 .

[8]  David F. Fletcher,et al.  A computational fluids dynamics study of buoyancy effects in reverse osmosis , 2004 .

[9]  Georges Belfort,et al.  Fluid mechanics in membrane filtration: Recent developments☆ , 1989 .

[10]  Sandeep K. Karode,et al.  Flow visualization through spacer filled channels by computational fluid dynamics I. , 2001 .

[11]  Javier Garrido,et al.  A finite-difference method for numerical solution of the steady-state nernst—planck equations with non-zero convection and electric current density , 1986 .

[12]  M. Fiebig,et al.  Vortices and Heat Transfer , 1997 .

[13]  P. Moulin,et al.  Dean vortices applied to membrane process Part I. Experimental approach , 2007 .

[14]  David F. Fletcher,et al.  Simulation of the Flow around Spacer Filaments between Channel Walls. 2. Mass-Transfer Enhancement , 2002 .

[15]  Dianne E. Wiley,et al.  Optimisation of membrane module design for brackish water desalination , 1985 .

[16]  Dianne E. Wiley,et al.  CFD simulations of net-type turbulence promoters in a narrow channel , 2001 .

[17]  J. A. Wesselingh,et al.  Transport of large molecules through membranes with narrow pores - The Maxwell-Stefan description combined with hydrodynamic theory , 2002 .

[18]  Abdul Latif Ahmad,et al.  Feed spacer mesh angle: 3D modeling, simulation and optimization based on unsteady hydrodynamic in spiral wound membrane channel , 2009 .

[19]  Ken Darcovich,et al.  Turbulent transport in membrane modules by CFD simulation in two dimensions , 1995 .

[20]  P. Feron,et al.  The influence of separators on hydrodynamics and mass transfer in narrow cells: Flow visualisation , 1991 .

[21]  P. R. Neal,et al.  The effect of filament orientation on critical flux and particle deposition in spacer-filled channels , 2003 .

[22]  Janet M. Twomey,et al.  Validation and Verification , 1997 .

[23]  Viriato Semiao,et al.  Hydrodynamics and concentration polarization in NF/RO spiral-wound modules with ladder-type spacers , 2003 .

[24]  Geert Versteeg,et al.  Application of the Maxwell–Stefan theory to the transport in ion-selective membranes used in the chloralkali electrolysis process , 1999 .

[25]  Rajamani Krishna,et al.  THE MAXWELL-STEFAN FORMULATION OF IRREVERSIBLE THERMODYNAMICS FOR SIMULTANEOUS HEAT AND MASS TRANSFER , 1979 .

[26]  David F. Fletcher,et al.  Simulation of the Flow around Spacer Filaments between Narrow Channel Walls. 1. Hydrodynamics , 2002 .

[27]  David F. Fletcher,et al.  Laminar Flow and Heat Transfer in a Periodic Serpentine Channel , 2005 .

[28]  W. Focke,et al.  On the mechanism of transfer enhancement by eddy promoters , 1983 .

[29]  Dianne E. Wiley,et al.  Spacer characterization and pressure drop modelling in spacer-filled channels for ultrafiltration☆ , 1994 .

[30]  B. Narang,et al.  Exact solution for entrance region flow between parallel plates , 1983 .

[31]  John H. Weare,et al.  Calculation of multicomponent ionic diffusion from zero to high concentration: I. The system Na-K-Ca-Mg-Cl-SO4-H2O at 25°C , 1991 .

[32]  A. B. de Haan,et al.  Novel spacers for mass transfer enhancement in membrane separations , 2005 .

[33]  Antonio Ficarella,et al.  Numerical analysis of a cross-flow compact heat exchanger for vehicle applications , 2005 .

[34]  David F. Fletcher,et al.  Spiral wound modules and spacers - Review and analysis , 2004 .

[35]  Takeshi Kataoka,et al.  A consideration on flow distribution in an ion exchange compartment with spacer , 1982 .

[36]  David F. Fletcher,et al.  Unsteady flows with mass transfer in narrow zigzag spacer-filled channels : A numerical study , 2006 .

[37]  Hans G.L. Coster,et al.  Direct observation of particle deposition on the membrane surface during crossflow microfiltration , 1998 .

[38]  Viriato Semiao,et al.  Flow management in nanofiltration spiral wound modules with ladder-type spacers , 2002 .

[39]  Masoud Rahimi,et al.  CFD modeling of permeate flux in cross-flow microfiltration membrane , 2005 .

[40]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[41]  P. Roache QUANTIFICATION OF UNCERTAINTY IN COMPUTATIONAL FLUID DYNAMICS , 1997 .

[42]  Kuo-Lun Tung,et al.  CFD simulation of fluid flow through spacer-filled membrane module : selecting suitable cell types for periodic boundary conditions , 2008 .

[43]  Viriato Semiao,et al.  Concentration polarisation and flow structure within nanofiltration spiral-wound modules with ladder-type spacers , 2004 .

[44]  U. Merten,et al.  Flow Relationships in Reverse Osmosis , 1963 .

[45]  James M. Dickson,et al.  Mathematical modeling of nanofiltration membranes with mixed electrolyte solutions , 2004 .

[46]  Edward L Cussler,et al.  Applicability of the Stefan‐Maxwell equations to multicomponent diffusion in liquids , 1962 .

[47]  Timothy G. Trucano,et al.  Verification and Validation in Computational Fluid Dynamics , 2002 .

[48]  Clement Kleinstreuer,et al.  Laminar dilute suspension flows in plate- and frame ultrafiltration units , 1983 .

[49]  Georges Belfort,et al.  Dean Vortices with Wall Flux in a Curved Channel Membrane System: 3. Concentration Polarization in a Spiral Reverse Osmosis Slit , 1998 .

[50]  B. B. Owen,et al.  The Physical Chemistry of Electrolytic Solutions , 1963 .

[51]  R. Krishna,et al.  The Maxwell-Stefan approach to mass transfer , 1997 .

[52]  Vivek V. Ranade,et al.  Fluid dynamics of spacer filled rectangular and curvilinear channels , 2006 .

[53]  Jie Bao,et al.  A unified model of the time dependence of flux decline for the long-term ultrafiltration of whey , 2009 .

[54]  J. A. Wesselingh,et al.  EXPLORING THE MAXWELL-STEFAN DESCRIPTION OF ION-EXCHANGE , 1995 .

[55]  A. Katchalsky,et al.  Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. , 1958, Biochimica et biophysica acta.

[56]  Anthony G. Fane,et al.  Enhanced concentration polarization by unstirred fouling layers in reverse osmosis: Detection by sodium chloride tracer response technique , 2007 .

[57]  David F. Fletcher,et al.  Simulation of Unsteady Flow and Vortex Shedding for Narrow Spacer-Filled Channels , 2003 .

[58]  B. Gros,et al.  Membrane mass transport modeling with the periodic boundary condition , 2009, Computers and Chemical Engineering.

[59]  Philippe Moulin,et al.  Computational fluid dynamics applied to membranes: State of the art and opportunities , 2006 .

[60]  L. Onsager,et al.  THEORIES AND PROBLEMS OF LIQUID DIFFUSION , 1945, Annals of the New York Academy of Sciences.

[61]  Woo-Sik Kim,et al.  Mass transfer in a three-dimensional net-type turbulence promoter , 1987 .

[62]  Wen-Quan Tao,et al.  Numerical prediction for laminar forced convection heat transfer in parallel-plate channels with streamwise-periodic rod disturbances , 1998 .

[63]  David G. Thomas Forced convection mass transfer: Part III. Increased mass transfer from a flat plate caused by the wake from cylinders located near the edge of the boundary layer , 1966 .

[64]  J. Ziegler,et al.  Ion exchange diffusion in electromembranes and its description using the Maxwell-Stefan formalism , 1997 .

[65]  Vivek V. Ranade,et al.  Comparison of flow structures in spacer-filled flat and annular channels⁎ , 2006 .

[66]  João M. Miranda,et al.  Mass transfer in the vicinity of a separation membrane: the applicability of the stagnant film theory , 2002 .

[67]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[68]  K. S. Spiegler,et al.  Transport processes in ionic membranes , 1958 .

[69]  Kyung-Soo Yang Numerical Investigation of Instability and Transition in an Obstructed Channel Flow , 2000 .

[70]  Lianfa Song,et al.  A numerical study on concentration polarization and system performance of spiral wound RO membrane modules , 2006 .

[71]  P. L. T. Brian,et al.  Concentration Polar zation in Reverse Osmosis Desalination with Variable Flux and Incomplete Salt Rejection , 1965 .

[72]  P. Moulin,et al.  Dean vortices applied to membrane process Part II: Numerical approach , 2007 .

[73]  J.L.C. Santos,et al.  Investigation of flow patterns and mass transfer in membrane module channels filled with flow-aligned spacers using computational fluid dynamics (CFD) , 2007 .

[74]  David F. Fletcher,et al.  Techniques for computational fluid dynamics modelling of flow in membrane channels , 2003 .

[75]  A. S. Berman Laminar Flow in Channels with Porous Walls , 1953 .

[76]  W. L. Griffith,et al.  The role of turbulence promoters in hyperfiltration plant optimization , 1971 .

[77]  Abdul Wahab Mohammad,et al.  Predicting flux and rejection of multicomponent salts mixture in nanofiltration membranes , 2003 .

[78]  S. G. Yiantsios,et al.  Direct numerical simulation of flow in spacer-filled channels: Effect of spacer geometrical characteristics , 2007 .

[79]  S. Orszag,et al.  Renormalization group analysis of turbulence. I. Basic theory , 1986 .

[80]  P. Amblard,et al.  Modeling of multi-electrolyte transport in charged ceramic and organic nanofilters using the computer simulation program NanoFlux , 2002 .

[81]  David E. Anderson,et al.  Multicomponent Electrolyte Diffusion , 1976 .

[82]  B. Massey,et al.  Mechanics of Fluids , 2018 .

[83]  Anthony G. Fane,et al.  Effect of viscosity on concentration polarization in ultrafiltration , 1988 .

[84]  Shoji Kimura,et al.  Concentration Polarization Effects in Reverse Osmosis Using Porous Cellulose Acetate Membranes , 1968 .

[85]  P. R. Neal,et al.  Estimation of foulant deposition across the leaf of a spiral-wound module☆ , 2002 .

[86]  Christian Trägårdh,et al.  Computer simulations of mass transfer in the concentration boundary layer over ultrafiltration membranes , 1993 .

[87]  David F. Fletcher,et al.  Computational fluid dynamics simulations of taylor bubbles in tubular membranes: Model validation and application to laminar flow systems , 2005 .

[88]  S. G. Yiantsios,et al.  Numerical simulation of the flow in a plane-channel containing a periodic array of cylindrical turbulence promoters , 2004 .

[89]  Dianne E. Wiley,et al.  Numerical study of two-dimensional multi-layer spacer designs for minimum drag and maximum mass transfer , 2008 .

[90]  M. Shakaib,et al.  Study on the effects of spacer geometry in membrane feed channels using three-dimensional computational flow modeling , 2007 .

[91]  Sandeep K. Karode,et al.  Laminar flow in channels with porous walls, revisited ☆ , 2001 .

[92]  Chaoyang Wang Exact Solutions of the Steady-State Navier-Stokes Equations , 1991 .

[93]  Zhanfeng Cui,et al.  A Maxwell-Stefan approach to modelling the cross-flow ultrafiltration of protein solutions in tubular membranes , 1998 .

[94]  Joshua S. Dranoff,et al.  Application of the Stefan-Maxwell equations to diffusion in ion exchangers. 1. Theory , 1982 .

[95]  Y. Shah,et al.  Mass transport in reverse osmosis in case of variable diffusivity , 1971 .

[96]  S. Orszag,et al.  Renormalization group analysis of turbulence. I. Basic theory , 1986, Physical review letters.

[97]  W.G.B. Mandersloot,et al.  The effect of viscous forces on heat and mass transfer in systems with turbulence promoters and in packed beds , 1968 .

[98]  Sara Q. Zhang,et al.  A three‐dimensional instability in mixed convection with streamwise periodic heating , 1995 .

[99]  A. B. de Haan,et al.  Optimization of commercial net spacers in spiral wound membrane modules , 2002 .

[100]  Georges Belfort,et al.  Dean vortices with wall flux in a curved channel membrane system , 1993 .

[101]  Vítor Geraldes,et al.  Generalized mass-transfer correction factor for nanofiltration and reverse osmosis , 2006 .

[102]  Cristina H. Amon,et al.  Numerical prediction of convective heat transfer in self-sustained oscillatory flows , 1990 .

[103]  S. G. Yiantsios,et al.  A numerical and experimental study of mass transfer in spacer-filled channels: Effects of spacer geometrical characteristics and Schmidt number , 2009 .

[104]  A. H. P. Skelland,et al.  Diffusional mass transfer , 1974 .

[105]  M. Fiebig Embedded vortices in internal flow: heat transfer and pressure loss enhancement , 1995 .

[106]  Anthony G. Fane,et al.  Net-Type Spacers: Effect of Configuration on Fluid Flow Path and Ultrafiltration Flux , 1994 .

[107]  David G. Thomas Forced convection mass transfer: Part II. Effect of wires located near the edge of the laminar boundary layer on the rate of forced convection from a flat plate , 1965 .

[108]  Abderrahim Abbas,et al.  Use of fluid instabilities to enhance membrane performance: a review , 2001 .

[109]  Anthony G. Fane,et al.  Optimal channel spacer design for ultrafiltration , 1991 .

[110]  Ain A. Sonin,et al.  Sherwood Number and Friction Factor Correlations for Electrodialysis Systems, with Application to Process Optimization , 1976 .

[111]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[112]  R. I. Kermode,et al.  Prediction of concentration polarization and flux behavior in reverse osmosis by numerical analysis , 1990 .

[113]  Vítor Geraldes,et al.  Flow and mass transfer modelling of nanofiltration , 2001 .

[114]  Ya-Ling He,et al.  Experimental study on friction factor and numerical simulation on flow and heat transfer in an alternating elliptical axis tube , 2006 .

[115]  G. Schock,et al.  Mass transfer and pressure loss in spiral wound modules , 1987 .

[116]  Georges Belfort,et al.  Fluid mechanics and cross-flow filtration: some thoughts , 1985 .

[117]  Rajamani Krishna,et al.  Diffusion in multicomponent electrolyte systems , 1987 .

[118]  Raphael Semiat,et al.  Investigation of flow next to membrane walls , 2005 .

[119]  Edward L Cussler,et al.  Diffusion: Mass Transfer in Fluid Systems , 1984 .

[120]  Dianne E. Wiley,et al.  Numerical study of mass transfer in three-dimensional spacer-filled narrow channels with steady flow , 2007 .

[121]  Wen-Quan Tao,et al.  An experimental study on heat/mass transfer and pressure drop characteristics for arrays of nonuniform plate length positioned obliquely to the flow direction , 1993 .

[122]  Vicki Chen,et al.  Simulation of protein ultrafiltration using CFD: Comparison of concentration polarisation and fouling effects with filtration and protein adsorption experiments , 2009 .

[123]  E. Sparrow,et al.  Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area , 1977 .

[124]  Jae Min Hyun,et al.  Numerical simulation of three-dimensional flow structure in a driven cavity , 1989 .

[125]  Georges Belfort,et al.  An experimental study of electrodialysis hydrodynamics , 1972 .

[126]  P. Knupp,et al.  Completed Richardson extrapolation , 1993 .