Fusion in diffusion MRI for improved fibre orientation estimation: An application to the 3T and 7T data of the Human Connectome Project

Determining the acquisition parameters in diffusion magnetic resonance imaging (dMRI) is governed by a series of trade-offs. Images of lower resolution have less spatial specificity but higher signal to noise ratio (SNR). At the same time higher angular contrast, important for resolving complex fibre patterns, also yields lower SNR. Considering these trade-offs, the Human Connectome Project (HCP) acquires high quality dMRI data for the same subjects at different field strengths (3T and 7T), which are publically released. Due to differences in the signal behavior and in the underlying scanner hardware, the HCP 3T and 7T data have complementary features in k- and q-space. The 3T dMRI has higher angular contrast and resolution, while the 7T dMRI has higher spatial resolution. Given the availability of these datasets, we explore the idea of fusing them together with the aim of combining their benefits. We extend a previously proposed data-fusion framework and apply it to integrate both datasets from the same subject into a single joint analysis. We use a generative model for performing parametric spherical deconvolution and estimate fibre orientations by simultaneously using data acquired under different protocols. We illustrate unique features from each dataset and how they are retained after fusion. We further show that this allows us to complement benefits and improve brain connectivity analysis compared to analyzing each of the datasets individually.

[1]  Steen Moeller,et al.  Advances in diffusion MRI acquisition and processing in the Human Connectome Project , 2013, NeuroImage.

[2]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[3]  J. Price,et al.  Architectonic subdivision of the human orbital and medial prefrontal cortex , 2003, The Journal of comparative neurology.

[4]  Tipu Z. Aziz,et al.  Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner , 2011, NeuroImage.

[5]  Stamatios N. Sotiropoulos,et al.  An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging , 2016, NeuroImage.

[6]  Rainer Goebel,et al.  High-resolution diffusion tensor imaging and tractography of the human optic chiasm at 9.4 T , 2008, NeuroImage.

[7]  Jan Sijbers,et al.  Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data , 2014, NeuroImage.

[8]  M. Bernstein,et al.  Measurements of T 1 Relaxation times at 3 . 0 T : Implications for clinical MRA , 2001 .

[9]  Stefan Skare,et al.  How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging , 2003, NeuroImage.

[10]  Timothy E. J. Behrens,et al.  Human and Monkey Ventral Prefrontal Fibers Use the Same Organizational Principles to Reach Their Targets: Tracing versus Tractography , 2013, The Journal of Neuroscience.

[11]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[12]  Timothy Edward John Behrens,et al.  Ball and rackets: Inferring fiber fanning from diffusion-weighted MRI , 2012, NeuroImage.

[13]  K. Uğurbil,et al.  Spin‐echo fMRI in humans using high spatial resolutions and high magnetic fields , 2003, Magnetic resonance in medicine.

[14]  Jaimie M. Henderson,et al.  Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention , 2006 .

[15]  A. Szafer,et al.  An analytical model of restricted diffusion in bovine optic nerve , 1997, Magnetic resonance in medicine.

[16]  Timothy E. J. Behrens,et al.  COMPARISON OF DIFFUSION MRI PREDICTIONS AND HISTOLOGY IN THE MACAQUE BRAIN , 2012 .

[17]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[18]  Derek K. Jones,et al.  Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging , 2013, Human brain mapping.

[19]  Derek K. Jones,et al.  Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI , 2003, Magnetic resonance in medicine.

[20]  Thomas R. Knösche,et al.  k-space and q-space: Combining ultra-high spatial and angular resolution in diffusion imaging using ZOOPPA at 7T , 2012, NeuroImage.

[21]  José M. García,et al.  Accelerating Fibre Orientation Estimation from Diffusion Weighted Magnetic Resonance Imaging Using GPUs , 2012, PDP.

[22]  F. Szczepankiewicz,et al.  Extrapolation-Based References Improve Motion and Eddy-Current Correction of High B-Value DWI Data: Application in Parkinson’s Disease Dementia , 2015, PloS one.

[23]  Fan Zhang,et al.  Effects of echo time on diffusion quantification of brain white matter at 1.5T and 3.0T , 2009, Magnetic resonance in medicine.

[24]  Giuseppe Scotti,et al.  A Model-Based Deconvolution Approach to Solve Fiber Crossing in Diffusion-Weighted MR Imaging , 2007, IEEE Transactions on Biomedical Engineering.

[25]  S.N. Sotiropoulos,et al.  High resolution whole brain diffusion imaging at 7T for the Human Connectome Project , 2015, NeuroImage.

[26]  Christophe Lenglet,et al.  Estimating Orientation Distribution Functions with Probability Density Constraints and Spatial Regularity , 2009, MICCAI.

[27]  Timothy Edward John Behrens,et al.  Accelerating Fibre Orientation Estimation from Diffusion Weighted Magnetic Resonance Imaging Using GPUs , 2012, 2012 20th Euromicro International Conference on Parallel, Distributed and Network-based Processing.

[28]  Daniel C. Alexander,et al.  NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain , 2012, NeuroImage.

[29]  Steen Moeller,et al.  Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project , 2013, NeuroImage.

[30]  Song Zhi,et al.  Quantum dynamics of tight-binding networks coherently controlled by external fields , 2007 .

[31]  Bruce Fischl,et al.  Accurate and robust brain image alignment using boundary-based registration , 2009, NeuroImage.

[32]  Rachid Deriche,et al.  Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions , 2009, IEEE Transactions on Medical Imaging.

[33]  Stamatios N. Sotiropoulos,et al.  Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes , 2015, NeuroImage.

[34]  P. Basser,et al.  Toward a quantitative assessment of diffusion anisotropy , 1996, Magnetic resonance in medicine.

[35]  David P. Wipf,et al.  A New View of Automatic Relevance Determination , 2007, NIPS.

[36]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[37]  A. Lozano,et al.  Deep Brain Stimulation for Treatment-Resistant Depression , 2005, Neuron.

[38]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[39]  Randy L. Gollub,et al.  Reproducibility of quantitative tractography methods applied to cerebral white matter , 2007, NeuroImage.

[40]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[41]  S. Holland,et al.  NMR relaxation times in the human brain at 3.0 tesla , 1999, Journal of magnetic resonance imaging : JMRI.

[42]  F. Szczepankiewicz,et al.  Microanisotropy imaging: quantification of microscopic diffusion anisotropy and orientational order parameter by diffusion MRI with magic-angle spinning of the q-vector , 2014, Front. Physics.

[43]  Julien Cohen-Adad,et al.  The Human Connectome Project and beyond: Initial applications of 300mT/m gradients , 2013, NeuroImage.

[44]  Hartwig R. Siebner,et al.  Interpolation of diffusion weighted imaging datasets , 2014, NeuroImage.

[45]  Antonio Criminisi,et al.  Image Quality Transfer via Random Forest Regression: Applications in Diffusion MRI , 2014, MICCAI.

[46]  Hui Zhang,et al.  Realistic simulation of artefacts in diffusion MRI for validating post-processing correction techniques , 2016, NeuroImage.

[47]  M. Hedehus,et al.  In vivo mapping of the fast and slow diffusion tensors in human brain , 2002, Magnetic resonance in medicine.

[48]  Anke Henning,et al.  Relaxation Parameter Mapping Adapted for 7T and Validation against Optimized Single Voxel MRS , 2013 .

[49]  Thomas R. Knösche,et al.  Parametric spherical deconvolution: Inferring anatomical connectivity using diffusion MR imaging , 2007, NeuroImage.

[50]  Manuel Graña,et al.  Model‐based analysis of multishell diffusion MR data for tractography: How to get over fitting problems , 2012, Magnetic resonance in medicine.

[51]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[52]  Daniel C. Alexander,et al.  Maximum Entropy Spherical Deconvolution for Diffusion MRI , 2005, IPMI.

[53]  P. Basser Diffusion MRI: From Quantitative Measurement to In vivo Neuroanatomy , 2009 .

[54]  J. Helpern,et al.  Diffusional kurtosis imaging: The quantification of non‐gaussian water diffusion by means of magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[55]  A. Anderson Measurement of fiber orientation distributions using high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[56]  R. Turner,et al.  Layer-Specific Intracortical Connectivity Revealed with Diffusion MRI , 2012, Cerebral cortex.

[57]  Elias Kellner,et al.  About the Geometry of Asymmetric Fiber Orientation Distributions , 2012, IEEE Transactions on Medical Imaging.

[58]  Timothy Edward John Behrens,et al.  Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: Reducing the noise floor using SENSE , 2013, Magnetic resonance in medicine.

[59]  Christophe Lenglet,et al.  Sparse Bayesian Inference of White Matter Fiber Orientations from Compressed Multi-resolution Diffusion MRI , 2015, MICCAI.

[60]  P. Basser,et al.  Axcaliber: A method for measuring axon diameter distribution from diffusion MRI , 2008, Magnetic resonance in medicine.

[61]  Mark W. Woolrich,et al.  RubiX: Combining Spatial Resolutions for Bayesian Inference of Crossing Fibers in Diffusion MRI , 2013, IEEE Transactions on Medical Imaging.

[62]  K. Uğurbil,et al.  Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo , 2007, Magnetic resonance in medicine.

[63]  J. Hyde,et al.  Characterization of continuously distributed cortical water diffusion rates with a stretched‐exponential model , 2003, Magnetic resonance in medicine.

[64]  Paul Strauss,et al.  Magnetic Resonance Imaging Physical Principles And Sequence Design , 2016 .

[65]  David K. Yu,et al.  Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography , 2015, Proceedings of the National Academy of Sciences.