Opacity in compact extragalactic radio sources and its effect on astrophysical and astrometric studies

Context. The apparent position of the “core” in a parsec-scale radio jet (a compact, bright emitting region at the narrow end of the jet) depends on the observing frequency, owing to synchrotron self-absorption and external absorption. While providing a tool probing physical conditions in the vicinity of the core, this dependency poses problems for astrometric studies using compact radio sources. Aims. We investigated the frequency-dependent shift in the positions of the cores ( core shift ) observed with very long baseline interferometry (VLBI) in parsec-scale jets. We discuss related physics, as well as its effect on radio astrometry and the connection between radio and optical positions of astrometric reference objects. Methods. We searched for the core shift in a sample of 277 radio sources imaged at 2.3 GHz (13 cm) and 8.6 GHz (4 cm) frequency bands using VLBI observations made in 2002 and 2003. The core shift was measured by referencing the core position to optically thin jet features whose positions are not expected to change with frequency. Results. We present here results for 29 selected active galactic nuclei (AGN) with bright distinct VLBI jet features that can be used in differential measurements and that allow robust measurements of the shift to be made. In these AGN, the magnitude of the measured core shift between 2.3 and 8.6 GHz reaches 1.4 mas, with a median value for the sample of 0.44 mas. Nuclear flares result in temporal variability of the shift. Conclusions. An average shift between the radio (4 cm) and optical (6000 A) bands is estimated to be approximately 0.1 mas, and it should be taken into account in order to provide the required accuracy of the radio-optical reference frame connection. This can be accomplished with multi-frequency VLBI measurements yielding estimates of the core shift in the sources used for the radio reference frame and radio-optical position alignment.

[1]  R. Davies,et al.  Astronomical Society of the Pacific Conference Series , 2010 .

[2]  S. Croke,et al.  Aligning VLBI images of active galactic nuclei at different frequencies , 2008, 0809.3313.

[3]  M. Böttcher,et al.  Modeling the emission processes in blazars , 2006, astro-ph/0608713.

[4]  C. Cesarsky,et al.  Exploring the Cosmic Frontier , 2007 .

[5]  M. Cohen,et al.  ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 RELATIVISTIC BEAMING AND THE INTRINSIC PROPERTIES OF EXTRAGALACTIC RADIO JETS , 2006 .

[6]  Bradley M. Peterson,et al.  Black hole masses from reverberation mapping , 2006 .

[7]  E. Fomalont,et al.  The Fifth VLBA Calibrator Survey: VCS5 , 2006, astro-ph/0607524.

[8]  C. Barache,et al.  Cross-identifications and astro-photometric comparisons of the ICRF with recent catalogs of quasars , 2006 .

[9]  M. Cohen,et al.  ACCEPTED FOR PUBLICATION IN APJ LETTERS Preprint typeset using LATEX style emulateapj v. 12/14/05 INTRINSIC BRIGHTNESS TEMPERATURES OF AGN JETS , 2006 .

[10]  E. Fomalont,et al.  The Fourth VLBA Calibrator Survey - VCS4 , 2005, astro-ph/0508506.

[11]  M. Reid,et al.  Future Directions in High Resolution Astronomy: The 10th Anniversary of the VLBA , 2005 .

[12]  P. Seidelmann,et al.  Astrometry in the Age of the Next Generation of Large Telescopes , 2005 .

[13]  Roger W. Romani,et al.  A Northern Survey of Gamma-Ray Blazar Candidates , 2005, astro-ph/0503115.

[14]  K. Hirotani Kinetic Luminosity and Composition of Active Galactic Nuclei Jets , 2004, astro-ph/0411087.

[15]  E. Fomalont,et al.  The Third VLBA Calibrator Survey: VCS3 , 2004, astro-ph/0409698.

[16]  Ph. Héraudeau,et al.  SF2A-2005: Semaine de l'Astrophysique Francaise , 2005 .

[17]  M. Rupen,et al.  The Location of the Core in M81 , 2004, astro-ph/0407619.

[18]  H. Falcke,et al.  The twin-jet system in NGC 1052: VLBI-scrutiny of the obscuring torus , 2004, astro-ph/0407283.

[19]  Patrick Charlot,et al.  The Second Extension of the International Celestial Reference Frame: ICRF-EXT.1 , 2004 .

[20]  D. MacMillan,et al.  The Second VLBA Calibrator Survey: VCS2 , 2003 .

[21]  V. K. Konnikova,et al.  Radio and optical spectral studies of radio sources , 2003 .

[22]  E. Fomalont,et al.  The VLBA Calibrator Survey—VCS1 , 2002, astro-ph/0201414.

[23]  K. Johnston,et al.  Extragalactic Radio Source Selection for Use in Directly Linking Optical Astrometric Observations to the Radio Reference Frame , 2001 .

[24]  S. Iguchi,et al.  Pair Plasma Dominance in the Parsec-Scale Relativistic Jet of 3C 345 , 2000, astro-ph/0005394.

[25]  P. Charlot,et al.  VLBA Observations of Radio Reference Frame Sources. III. Astrometric Suitability of an Additional 225 Sources , 2000 .

[26]  Karen D. Baver,et al.  International VLBI Service for Geodesy and Astrometry: 2000 General Meeting Proceedings , 2000 .

[27]  V. Dhawan,et al.  VLBA Absorption Imaging of Ionized Gas Associated with the Accretion Disk in NGC 1275 , 1999, astro-ph/9909365.

[28]  John A. Biretta,et al.  Formation of the radio jet in M87 at 100 Schwarzschild radii from the central black hole , 1999, Nature.

[29]  K. Johnston,et al.  Reference Frames in Astronomy , 1999 .

[30]  A. Lobanov,et al.  Spectral Evolution of the Parsec-Scale Jet in the Quasar 3C 345 , 1999 .

[31]  C. Carilli,et al.  Synthesis Imaging in Radio Astronomy II , 1999 .

[32]  Michael Shao,et al.  SIM: the space interferometry mission , 1998, Astronomical Telescopes and Instrumentation.

[33]  Patrick Charlot,et al.  The International Celestial Reference Frame as Realized by Very Long Baseline Interferometry , 1998 .

[34]  A. Lobanov Spectral distributions in compact radio sources I. Imaging with VLBI data , 1998, astro-ph/9804112.

[35]  L. Gurvits,et al.  Sub-Milliarcsecond Imaging of Quasars and Active Galactic Nuclei. IV. Fine-Scale Structure , 2005, astro-ph/0505536.

[36]  B. Pettersen Proceedings of the 12th working meeting on European VLBI for Geodesy and Astrometry, Hønefoss, Norway, September 12 and 13, 1997 , 1997 .

[37]  A. Lobanov,et al.  Spectral imaging: Shock fronts and plasma instabilities , 1997 .

[38]  Michael A. Perryman,et al.  GAIA: Global astrometric interferometer for astrophysics. , 1996 .

[39]  A. Marscher,et al.  An Analysis of the Synchrotron Self-Compton Model for the Multi--Wave Band Spectra of Blazars , 1996 .

[40]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[41]  A. Marscher Probes of the inner jets of blazars. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[42]  R. Blandford,et al.  Pair cascades in extragalactic jets. 1: Gamma rays , 1995 .

[43]  I. Shapiro,et al.  On the relative proper motion of quasars 1038+528 A,B , 1994 .

[44]  M. Cohen,et al.  Superluminal Motion Statistics and Cosmology , 1994 .

[45]  P. Charlot Radio-source structure in astrometric and geodetic very long baseline interferometry , 1990 .

[46]  Philippe Veron,et al.  A catalogue of quasars and active nuclei: 12th edition , 1998 .

[47]  P. Tomasi,et al.  European VLBI for Geodesy and Astrometry , 1988 .

[48]  D. Hutter,et al.  Application of a relativistic jet model to the study of BL Lacertae objects , 1986 .

[49]  A. Konigl Relativistic jets as X-ray and gamma-ray sources. , 1981 .

[50]  Roger D. Blandford,et al.  Relativistic jets as compact radio sources , 1979 .

[51]  A. Readhead,et al.  The mapping of compact radio sources from VLBI data. , 1978 .

[52]  R. Jennison A Phase Sensitive Interferometer Technique for the Measurement of the Fourier Transforms of Spatial Brightness Distributions of Small Angular Extent , 1958 .