Adjoint and defect error bounding and correction for functional estimates

[1]  Arieh Iserles,et al.  Acta Numerica 2004 , 2004 .

[2]  D. Venditti,et al.  Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .

[3]  Stefan Ulbrich,et al.  Adjoint-based derivative computations for the optimal control of discontinuous solutions of hyperbolic conservation laws , 2003, Syst. Control. Lett..

[4]  Endre Süli,et al.  Adaptive Finite Element Approximation of Hyperbolic Problems , 2003 .

[5]  J. Tinsley Oden,et al.  Computable Error Estimators and Adaptive Techniques for Fluid Flow Problems , 2003 .

[6]  Michael B. Giles,et al.  Discrete Adjoint Approximations with Shocks , 2003 .

[7]  Anthony T. Patera,et al.  A General Lagrangian Formulation for the Computation of A Posteriori Finite Element Bounds , 2003 .

[8]  M. Giles,et al.  Adjoint Error Correction for Integral Outputs , 2003 .

[9]  Stefan Ulbrich,et al.  A Sensitivity and Adjoint Calculus for Discontinuous Solutions of Hyperbolic Conservation Laws with Source Terms , 2002, SIAM J. Control. Optim..

[10]  D. Venditti,et al.  Grid adaptation for functional outputs: application to two-dimensional inviscid flows , 2002 .

[11]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[12]  Arieh Iserles,et al.  Acta Numerica 2002 , 2002 .

[13]  M. Giles,et al.  Analysis of Adjoint Error Correction for Superconvergent Functional Estimates , 2001 .

[14]  Rolf Rannacher,et al.  Adaptive Galerkin finite element methods for partial differential equations , 2001 .

[15]  Michael B. Giles,et al.  Analytic adjoint solutions for the quasi-one-dimensional Euler equations , 2001, Journal of Fluid Mechanics.

[16]  Nobuyuki Satofuka,et al.  Computational Fluid Dynamics 2000 , 2001 .

[17]  Michael B. Giles Defect and Adjoint Error Correction , 2001 .

[18]  R. Rannacher,et al.  A posteriori error analysis for stabilised finite element approximations of transport problems , 2000 .

[19]  Michael B. Giles,et al.  Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..

[20]  Michael B. Giles,et al.  Improved- lift and drag estimates using adjoint Euler equations , 1999 .

[21]  Serge Prudhomme,et al.  New approaches to error estimation and adaptivity for the Stokes and Oseen equations , 1999 .

[22]  Endre Süli,et al.  The Adaptive Computation of Far-Field Patterns by A Posteriori Error Estimation of Linear Functionals , 1998 .

[23]  J. Eric,et al.  Aerodynamic Design Optimization on Unstructured Meshes Using the Navier-Stokes Equations , 1998 .

[24]  J. Tinsley Oden,et al.  Advances in adaptive computational methods in mechanics , 1998 .

[25]  A. Jameson,et al.  Optimum Aerodynamic Design Using the Navier–Stokes Equations , 1997 .

[26]  Anthony T. Patera,et al.  Bounds for Linear–Functional Outputs of Coercive Partial Differential Equations : Local Indicators and Adaptive Refinement , 1998 .

[27]  J. Peraire,et al.  A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations , 1997 .

[28]  M. Giles,et al.  Adjoint equations in CFD: duality, boundary conditions and solution behaviour , 1997 .

[29]  Antony Jameson,et al.  Optimum aerodynamic design using the Navier-Stokes equations , 1997 .

[30]  J. Peraire,et al.  Practical Three-Dimensional Aerodynamic Design and Optimization Using Unstructured Meshes , 1997 .

[31]  Claes Johnson,et al.  Numerics and hydrodynamic stability: toward error control in computational fluid dynamics , 1995 .

[32]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[33]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[34]  John W. Barrett,et al.  Total Flux Estimates for a Finite-Element Approximation of Elliptic Equations , 1986 .

[35]  K. Bohmer Defect Correction Methods: Theory and Applications , 1984 .

[36]  Ivo Babuška,et al.  The post‐processing approach in the finite element method—Part 2: The calculation of stress intensity factors , 1984 .

[37]  Ivo Babuška,et al.  The post-processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements , 1984 .

[38]  Hans J. Stetter,et al.  The Defect Correction Approach , 1984 .

[39]  Wolfgang Hackbusch,et al.  Local Defect Correction Method and Domain Decomposition Techniques , 1984 .

[40]  A. Jameson Solution of the Euler equations for two dimensional transonic flow by a multigrid method , 1983 .

[41]  Robert D. Skeel,et al.  A Theoretical Framework for Proving Accuracy Results for Deferred Corrections , 1982 .

[42]  Klaus Böhmer,et al.  Discrete Newton methods and iterated defect corrections , 1981 .

[43]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[44]  Bengt Lindberg Error estimation and iterative improvement for discretization algorithms , 1980 .

[45]  S. Orszag,et al.  Advanced Mathematical Methods For Scientists And Engineers , 1979 .

[46]  H. Stetter The defect correction principle and discretization methods , 1978 .

[47]  Carl de Boor,et al.  The Stable Evaluation of B-Splines and Splines , 1978 .

[48]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[49]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[50]  Reinhard Frank,et al.  The method of Iterated Defect-Correction and its application to two-point boundary value problems , 1976 .

[51]  P. Zadunaisky On the estimation of errors propagated in the numerical integration of ordinary differential equations , 1976 .

[52]  J. D. Kerf A bibliography on fuzzy sets , 1975 .

[53]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[54]  Ralph A. Willoughby,et al.  Stiff differential systems , 1974 .

[55]  Hans J. Stetter Economical Global Error Estimation , 1974 .

[56]  J. Cole,et al.  Perturbation Methods in Applied Mathematics , 1969 .

[57]  Victor Pereyna Iterated deferred corrections for nonlinear boundary value problems , 1968 .

[58]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[59]  V. Pereyra On improving an approximate solution of a functional equation by deferred corrections , 1966 .

[60]  A. Booth Numerical Methods , 1957, Nature.

[61]  L. Fox,et al.  Some improvements in the use of relaxation methods for the solution of ordinary and partial differential equations , 1947, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[62]  Eric F Darve,et al.  Author ' s personal copy A hybrid method for the parallel computation of Green ’ s functions , 2009 .