Modal shape analysis beyond Laplacian

In recent years, substantial progress in shape analysis has been achieved through methods that use the spectra and eigenfunctions of discrete Laplace operators. In this work, we study spectra and eigenfunctions of discrete differential operators that can serve as an alternative to the discrete Laplacians for applications in shape analysis. We construct such operators as the Hessians of surface energies, which operate on a function space on the surface, or of deformation energies, which operate on a shape space. In particular, we design a quadratic energy such that, on the one hand, its Hessian equals the Laplace operator if the surface is a part of the Euclidean plane, and, on the other hand, the Hessian eigenfunctions are sensitive to the extrinsic curvature (e.g. sharp bends) on curved surfaces. Furthermore, we consider eigenvibrations induced by deformation energies, and we derive a closed form representation for the Hessian (at the rest state of the energy) for a general class of deformation energies. Based on these spectra and eigenmodes, we derive two shape signatures. One that measures the similarity of points on a surface, and another that can be used to identify features of surfaces.

[1]  Jean-Philippe Pons,et al.  Generalized Surface Flows for Mesh Processing , 2007 .

[2]  Christoph von Tycowicz,et al.  Interactive surface modeling using modal analysis , 2011, TOGS.

[3]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[4]  Hyeong-Seok Ko,et al.  Modal warping: real-time simulation of large rotational deformation and manipulation , 2004, IEEE Transactions on Visualization and Computer Graphics.

[5]  Mats G. Larson,et al.  The Finite Element Method: Theory, Implementation, and Applications , 2013 .

[6]  Jernej Barbic,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, ACM Trans. Graph..

[7]  Ronald Fedkiw,et al.  Simulation of clothing with folds and wrinkles , 2003, SCA '03.

[8]  K. Polthier,et al.  On the convergence of metric and geometric properties of polyhedral surfaces , 2007 .

[9]  Alex Pentland,et al.  Good vibrations: modal dynamics for graphics and animation , 1989, SIGGRAPH.

[10]  Eitan Grinspun,et al.  Discrete quadratic curvature energies , 2006, Comput. Aided Geom. Des..

[11]  H. Seidel,et al.  Pattern-aware Deformation Using Sliding Dockers , 2011, SIGGRAPH 2011.

[12]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[13]  Valerio Pascucci,et al.  Spectral surface quadrangulation , 2006, SIGGRAPH 2006.

[14]  Mathieu Desbrun,et al.  Discrete shells , 2003, SCA '03.

[15]  Tamal K. Dey,et al.  Persistent Heat Signature for Pose‐oblivious Matching of Incomplete Models , 2010, Comput. Graph. Forum.

[16]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[17]  Bruno Lévy,et al.  Spectral Geometry Processing with Manifold Harmonics , 2008, Comput. Graph. Forum.

[18]  Rasmus Larsen,et al.  Shape Analysis Using the Auto Diffusion Function , 2009 .

[19]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[20]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.

[21]  Leonidas J. Guibas,et al.  Global Intrinsic Symmetries of Shapes , 2008, Comput. Graph. Forum.

[22]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[23]  K. Polthier Computational Aspects of Discrete Minimal Surfaces , 2002 .

[24]  Leonidas J. Guibas,et al.  One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.

[25]  Martin Rumpf,et al.  A finite element method for surface restoration with smooth boundary conditions , 2004, Comput. Aided Geom. Des..

[26]  Eitan Grinspun,et al.  Cubic shells , 2007, SCA '07.

[27]  Chen Shen,et al.  Interactive Deformation Using Modal Analysis with Constraints , 2003, Graphics Interface.

[28]  L. Kobbelt,et al.  Spectral quadrangulation with orientation and alignment control , 2008, SIGGRAPH 2008.

[29]  Niklas Peinecke,et al.  Laplace-spectra as fingerprints for shape matching , 2005, SPM '05.

[30]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[31]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .

[32]  Leonidas J. Guibas,et al.  Shape Decomposition using Modal Analysis , 2009, Comput. Graph. Forum.

[33]  G. Dziuk,et al.  An algorithm for evolutionary surfaces , 1990 .

[34]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[35]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[36]  Ramsay Dyer,et al.  Spectral Mesh Processing , 2010, Comput. Graph. Forum.

[37]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[38]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..