Naturally Occurring Inorganic Nanoparticles: General Assessment and a Global Budget for One of Earth's Last Unexplored Major Geochemical Components

Naturally occurring inorganic nanoparticles: General assessment and a global budget for one of Earth’s last unexplored major geochemical components M.F. HOCHELLA, JR.1*, D. ARUGUETE1,2, B. KIM1 AND A.S. MADDEN3 1Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA (*correspondence: hochella@vt.edu) 2Present address: Geobiology and Low Temperature Geochemistry, Division of Earth Sciences, National Science Foundation, 4201 Wilson Blvd., Rm. 785, Arlington, VA 22230, USA 3School of Geology and Geophysics, Univeristy of Oklahoma, Norman, OK 73019, USA

[1]  M. Hochella Nanoscience and technology: the next revolution in the Earth sciences , 2002 .

[2]  R. H. Meade,et al.  Causes for the decline of suspended‐sediment discharge in the Mississippi River system, 1940–2007 , 2009 .

[3]  M. Wells,et al.  Marine submicron particles , 1992 .

[4]  Michael F. Hochella,et al.  Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2+ sorption , 2006 .

[5]  J. Engelbrecht,et al.  Airborne Mineral Dust , 2010 .

[6]  J. Feldhaus,et al.  EXAFS Studies on the Size Dependence of Structural and Dynamic Properties of CdS Nanoparticles , 1997 .

[7]  Tetsu K. Tokunaga,et al.  Kinetic stability of hematite nanoparticles: the effect of particle sizes , 2008 .

[8]  R. Feely,et al.  Long–range transport of giant mineral aerosol particles , 1988, Nature.

[9]  G. H. Nancollas,et al.  Mechanism of dissolution of sparingly soluble electrolytes. , 2001, Journal of the American Chemical Society.

[10]  C. Bonadonna,et al.  Atmospheric and Environmental Impacts of Volcanic Particulates , 2010 .

[11]  Michael F. Hochella,et al.  The non-oxidative dissolution of galena nanocrystals: Insights into mineral dissolution rates as a function of grain size, shape, and aggregation state , 2008 .

[12]  A. Schultz,et al.  Mid-Ocean Ridge Hydrothermal Fluxes and the Chemical Composition of the Ocean , 1996 .

[13]  G. H. Nancollas,et al.  Dissolution at the Nanoscale: Self‐Preservation of Biominerals , 2004 .

[14]  David M. Cwiertny,et al.  Surface Chemistry and Dissolution of α-FeOOH Nanorods and Microrods: Environmental Implications of Size-Dependent Interactions with Oxalate† , 2009 .

[15]  Masaru Chiba,et al.  A numerical study of the contributions of dust source regions to the global dust budget , 2006 .

[16]  M. Wells,et al.  Occurrence of small colloids in sea water , 1991, Nature.

[17]  A. S. Madden,et al.  A test of geochemical reactivity as a function of mineral size: Manganese oxidation promoted by hematite nanoparticles , 2005 .

[18]  Jochen Schmidt,et al.  Dissolution kinetics of titanium dioxide nanoparticles: the observation of an unusual kinetic size effect. , 2006, The journal of physical chemistry. B.

[19]  E. McDonald,et al.  Characterizing Mineral Dusts and Other Aerosols from the Middle East—Part 1: Ambient Sampling , 2009 .

[20]  T. Hofmann,et al.  Using FlFFF and aTEM to determine trace metal-nanoparticle associations in riverbed sediment. , 2010 .

[21]  Michael F Hochella,et al.  Aquatic environmental nanoparticles. , 2007, Journal of environmental monitoring : JEM.

[22]  N. Mahowald,et al.  Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate , 2005, Science.

[23]  J. Prospero Long‐term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality , 1999 .

[24]  Jillian F. Banfield,et al.  Enhanced adsorption of molecules on surfaces of nanocrystalline particles , 1999 .

[25]  E. Boyle,et al.  Soluble and Colloidal Iron in the Oligotrophic North Atlantic and North Pacific , 2001, Science.

[26]  D. Butterfield,et al.  Hydrothermal fluid fluxes calculated from the isotopic mass balance of thallium in the ocean crust , 2006 .

[27]  V. Colvin,et al.  Adsorption of cadmium on anatase nanoparticles-effect of crystal size and pH. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[28]  Daniel E. Giammar,et al.  Effects of particle size and crystalline phase on lead adsorption to titanium dioxide nanoparticles , 2007 .

[29]  Mitsuhiro Murayama,et al.  Influence of size and aggregation on the reactivity of an environmentally and industrially relevant nanomaterial (PbS). , 2009, Environmental science & technology.

[30]  G. H. Nancollas,et al.  Dissolution of crystallites: surface energetic control and size effects. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[31]  D. Dionysiou,et al.  Arsenic sorption on TiO2 nanoparticles: size and crystallinity effects. , 2010, Water research.

[32]  Farhad Rachidi,et al.  Determination of reflection coefficients at the top and bottom of elevated strike objects struck by lightning , 2003 .

[33]  N. M. Price,et al.  Direct use of inorganic colloidal iron by marine mixotrophic phytoplankton , 2001 .

[34]  J. Baltrusaitis,et al.  Reactions on Atmospheric Dust Particles: Surface Photochemistry and Size-Dependent Nanoscale Redox Chemistry , 2010 .

[35]  A. Putnis,et al.  Environmentally important, poorly crystalline Fe/Mn hydrous oxides: Ferrihydrite and a possibly new vernadite-like mineral from the Clark Fork River Superfund Complex , 2005 .

[36]  S. Tulaczyk,et al.  Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt , 2008, Geochemical transactions.

[37]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[38]  P. Buseck,et al.  Airborne minerals and related aerosol particles: effects on climate and the environment. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[39]  V. Grassian,et al.  Photochemistry of adsorbed nitrate on aluminum oxide particle surfaces. , 2009, The journal of physical chemistry. A.

[40]  G. E. Gadd,et al.  Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. , 2007, Environmental science & technology.

[41]  John M. Zachara,et al.  Metal Oxide Surfaces and Their Interactions with Aqueous Solutions and Microbial Organisms. , 1999, Chemical reviews.

[42]  S. E. O'reilly,et al.  Lead Sorption Efficiencies of Natural and Synthetic Mn and Fe-oxides , 2002 .

[43]  G. Luther,et al.  Chemistry of iron sulfides. , 2007, Chemical reviews.

[44]  Kouji Adachi,et al.  Nanoparticles in the Atmosphere , 2008 .

[45]  Jennifer D. Schuttlefield,et al.  Photochemistry of adsorbed nitrate. , 2008, Journal of the American Chemical Society.

[46]  D. Morata,et al.  Formation of cristobalite nanofibers during explosive volcanic eruptions , 2009 .

[47]  C. Xie,et al.  Zn2+ release from zinc and zinc oxide particles in simulated uterine solution. , 2006, Colloids and surfaces. B, Biointerfaces.

[48]  J. Prospero Long-range transport of mineral dust in the global atmosphere: impact of African dust on the environment of the southeastern United States. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Armand Masion,et al.  Enhanced adsorption of arsenic onto maghemites nanoparticles: As(III) as a probe of the surface structure and heterogeneity. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[50]  W. Vogelsberger,et al.  Dissolution Kinetics of Synthetic Amorphous Silica in Biological-Like Media and Its Theoretical Description , 2004 .

[51]  A. Marsh,et al.  Dopant Effects on the Photocatalytic Activity of Colloidal Zinc Sulfide Semiconductor Nanocrystals for the Oxidation of 2-Chlorophenol , 2010 .

[52]  G. H. Nancollas,et al.  The mechanism of dissolution of hydroxyapatite and carbonated apatite in acidic solutions , 1988 .

[53]  G. Buchan Ode to Soil , 2010, Journal of Soil and Water Conservation.

[54]  R. Hooke On the history of humans as geomorphic agents , 2000 .

[55]  J. Banfield,et al.  Nanoparticulate Iron Oxide Minerals in Soils and Sediments: Unique Properties and Contaminant Scavenging Mechanisms , 2005 .

[56]  D. Sparks,et al.  Nanominerals, Mineral Nanoparticles, and Earth Systems , 2008, Science.

[57]  J. Wilcoxon,et al.  Nanosize Semiconductors for Photooxidation , 2005 .

[58]  Kenneth L. Smith,et al.  Free-Drifting Icebergs: Hot Spots of Chemical and Biological Enrichment in the Weddell Sea , 2007, Science.

[59]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[60]  J. Brune,et al.  Particle size and energetics of gouge from earthquake rupture zones , 2005, Nature.

[61]  Yehuda Ben-Zion,et al.  Pulverized rocks in the Mojave section of the San Andreas Fault Zone , 2006 .

[62]  B. Gomez,et al.  Particle size analysis of the sediment suspended in a proglacial stream: glacier de Tsidjiore Nouve, Switzerland , 1989 .

[63]  Robert Raiswell,et al.  Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle : Implications for iron delivery to the oceans , 2006 .