Determining the equivalence for one-way quantum finite automata

Two quantum finite automata are equivalent if for any input string x the two automata accept x with equal probability. In this paper, we first focus on determining the equivalence for one-way quantum finite automata with control language (CL-1QFAs) defined by Bertoni et al., and then, as an application, we address the equivalence problem for measure-many one-way quantum finite automata (MM-1QFAs) introduced by Kondacs and Watrous. More specifically, we obtain that: (i)Two CL-1QFAs A"1 and A"2 with control languages (regular languages) L"1 and L"2, respectively, are equivalent if and only if they are (c"1n"1^2+c"2n"2^2-1)-equivalent, where n"1 and n"2 are the numbers of states in A"1 and A"2, respectively, and c"1 and c"2 are the numbers of states in the minimal DFAs that recognize L"1 and L"2, respectively. Furthermore, if L"1 and L"2 are given in the form of DFAs, with m"1 and m"2 states, respectively, then there exists a polynomial-time algorithm running in time O((m"1n"1^2+m"2n"2^2)^4) that takes as input A"1 and A"2 and determines whether they are equivalent. (ii)(As an application of item (i)): Two MM-1QFAs A"1 and A"2 with n"1 and n"2 states, respectively, are equivalent if and only if they are (3n"1^2+3n"2^2-1)-equivalent. Furthermore, there is a polynomial-time algorithm running in time O((3n"1^2+3n"2^2)^4) that takes as input A"1 and A"2 and determines whether A"1 and A"2 are equivalent.

[1]  Marats Golovkins,et al.  Quantum Pushdown Automata , 2000, SOFSEM.

[2]  Alberto Bertoni,et al.  Quantum Computing: 1-Way Quantum Automata , 2003, Developments in Language Theory.

[3]  Azaria Paz,et al.  Probabilistic automata , 2003 .

[4]  Hiroshi Imai,et al.  One-Way Probabilistic Reversible and Quantum One-Counter Automata , 2000, COCOON.

[5]  Andris Ambainis,et al.  Dense quantum coding and quantum finite automata , 2002, JACM.

[6]  Daowen Qiu,et al.  Determination of equivalence between quantum sequential machines , 2006, Theor. Comput. Sci..

[7]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[8]  Marco Carpentieri,et al.  Regular Languages Accepted by Quantum Automata , 2001, Inf. Comput..

[9]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[10]  Daowen Qiu,et al.  Characterization of Sequential Quantum Machines , 2002 .

[11]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[12]  Kazuo Iwama,et al.  Undecidability on quantum finite automata , 1999, STOC '99.

[13]  Gheorghe Paun,et al.  Regulated Rewriting in Formal Language Theory , 1989 .

[14]  Andris Ambainis,et al.  Two-way finite automata with quantum and classical state , 1999, Theor. Comput. Sci..

[15]  Jozef Gruska,et al.  Descriptional Complexity Issues in Quantum Computing , 2000, J. Autom. Lang. Comb..

[16]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[17]  Vincent D. Blondel,et al.  Decidable and Undecidable Problems about Quantum Automata , 2005, SIAM J. Comput..

[18]  Mika Hirvensalo,et al.  Improved Undecidability Results on the Emptiness Problem of Probabilistic and Quantum Cut-Point Languages , 2007, SOFSEM.

[19]  Alberto Bertoni,et al.  Analogies and di"erences between quantum and stochastic automata , 2001 .

[20]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[21]  Leonard M. Adleman,et al.  Quantum Computability , 1997, SIAM J. Comput..

[22]  Wen-Guey Tzeng,et al.  A Polynomial-Time Algorithm for the Equivalence of Probabilistic Automata , 1992, SIAM J. Comput..

[23]  Azaria Paz,et al.  Introduction to probabilistic automata (Computer science and applied mathematics) , 1971 .

[24]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[25]  John Watrous,et al.  On the power of quantum finite state automata , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[26]  Václav Hlavác,et al.  Proceedings of the 27th Conference on Current Trends in Theory and Practice of Informatics , 2000 .

[27]  Jozef Gruska,et al.  Quantum Computing , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[28]  Mariëlle Stoelinga,et al.  An Introduction to Probabilistic Automata , 2002, Bull. EATCS.

[29]  Andris Ambainis,et al.  1-way quantum finite automata: strengths, weaknesses and generalizations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[30]  Stanley Gudder Quantum Computers , 2000 .

[31]  M. W. Shields An Introduction to Automata Theory , 1988 .

[32]  Oscar H. IBARm Information and Control , 1957, Nature.

[33]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[34]  James P. Crutchfield,et al.  Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..

[35]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[36]  Paavo Turakainen,et al.  Generalized automata and stochastic languages , 1969 .

[37]  Andris Ambainis,et al.  Algebraic Results on Quantum Automata , 2005, Theory of Computing Systems.

[38]  Alex Brodsky,et al.  Characterizations of 1-Way Quantum Finite Automata , 2002, SIAM J. Comput..

[39]  Takeshi Koshiba,et al.  Polynomial-Time Algorithms for the Equivalence for One-Way Quantum Finite Automata , 2009, ISAAC.