A Parallel Solver for Incompressible Fluid Flows

The Navier-Stokes equations describe a large class of fluid flows but are difficult to solve analytically because of their nonlinearity. We present in this paper a parallel solver for the 3-D Navier-Stokes equations of incompressible unsteady flows with constant coefficients, discretized by the finite difference method. We apply the prediction-projection method which transforms the Navier-Stokes equations into three Helmholtz equations and one Poisson equation. For each Helmholtz system, we apply the Alternating Direction Implicit (ADI) method resulting in three tridiagonal systems. The Poisson equation is solved using partial diagonalization which transforms the Laplacian operator into a tridiagonal one. We describe an implementation based on MPI where the computations are performed on each subdomain and information is exchanged on the interfaces, and where the tridiagonal system solutions are accelerated using vectorization techniques. We present performance results on a current multicore system.

[1]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[2]  Message Passing Interface Forum MPI: A message - passing interface standard , 1994 .

[3]  Jack Dongarra,et al.  ScaLAPACK Users' Guide , 1987 .

[4]  Rolf Rannacher,et al.  Fundamental directions in mathematical fluid mechanics , 2000 .

[5]  Wing Kam Liu,et al.  Meshfree and particle methods and their applications , 2002 .

[6]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[7]  Lee Sael,et al.  Procedia Computer Science , 2015 .

[8]  L. A. G. Dresel,et al.  Elementary Numerical Analysis , 1966 .

[9]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[10]  Alberto Ferreira de Souza,et al.  Finite difference simulations of the Navier-Stokes equations using parallel distributed computing , 2003, Proceedings. 15th Symposium on Computer Architecture and High Performance Computing.

[11]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[12]  Ahmed H. Sameh,et al.  A parallel hybrid banded system solver: the SPIKE algorithm , 2006, Parallel Comput..

[13]  Robert M. Kirby,et al.  Parallel Scientific Computing in C++ and MPI , 2003 .

[14]  J. Anderson,et al.  Computational fluid dynamics : the basics with applications , 1995 .

[15]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  Rolf Rannacher,et al.  Finite Element Methods for the Incompressible Navier-Stokes Equations , 2000 .

[18]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[19]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[20]  M. Minion,et al.  Accurate projection methods for the incompressible Navier—Stokes equations , 2001 .

[21]  Beatrice Meini,et al.  The cyclic reduction algorithm: from Poisson equation to stochastic processes and beyond , 2008, Numerical Algorithms.

[22]  R. LeVeque Numerical methods for conservation laws , 1990 .

[23]  C. W. Hirt,et al.  SOLA-DM: A numerical solution algorithm for transient three-dimensional flows , 1988 .

[24]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[25]  George Em Karniadakis,et al.  Parallel Scientific Computing in C++ and MPI: C++ Basics , 2003 .

[26]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[27]  Brigitte Rozoy,et al.  Boost.SIMD: generic programming for portable SIMDization , 2012, PACT '12.

[28]  Samuel Boivin,et al.  A Fast Poisson Solver for OpenCL Using Multigrid Methods , 2011 .

[29]  Jack J. Dongarra,et al.  Basic Linear Algebra Subprograms Technical (Blast) Forum Standard (1) , 2002, Int. J. High Perform. Comput. Appl..

[30]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[31]  A. Vincent,et al.  The spatial structure and statistical properties of homogeneous turbulence , 1991, Journal of Fluid Mechanics.

[32]  The Eigen-Decomposition : Eigenvalues and Eigenvectors , 2006 .

[33]  Phillip Colella,et al.  An Incompressible Navier-Stokes with Particles Algorithm and Parallel Implementation , 2006 .

[34]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[35]  Willem Hundsdorfer,et al.  Partially Implicit BDF2 Blends for Convection Dominated Flows , 2000, SIAM J. Numer. Anal..

[36]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .