Voltammetric sensing of trypsin activity using gelatin as a substrate

[1]  F. Taghipour,et al.  ZnO nanoparticle/nanorod-based label-free electrochemical immunoassay for rapid detection of MMP-9 biomarker , 2020 .

[2]  P. Salvo,et al.  A voltammetric pH sensor for food and biological matrices , 2020, Sensors and Actuators B: Chemical.

[3]  Mark Bradley,et al.  Miniaturisation of a peptide-based electrochemical protease activity sensor using platinum microelectrodes. , 2019, The Analyst.

[4]  Pietro Salvo,et al.  Biosensors for measuring matrix metalloproteinases: An emerging research field , 2019, TrAC Trends in Analytical Chemistry.

[5]  A. Murray,et al.  Electrochemical sensing of human neutrophil elastase and polymorphonuclear neutrophil activity. , 2018, Biosensors & bioelectronics.

[6]  Mohammed Zourob,et al.  Detection of plasma MMP-9 within minutes. Unveiling some of the clues to develop fast and simple electrochemical magneto-immunosensors. , 2018, Biosensors & bioelectronics.

[7]  George E. Banis,et al.  Gelatin-Enabled Microsensor for Pancreatic Trypsin Sensing , 2018 .

[8]  John Atkinson,et al.  A review of screen-printed silver/silver chloride (Ag/AgCl) reference electrodes potentially suitable for environmental potentiometric sensors , 2017 .

[9]  M. K. Sezgintürk,et al.  Quantification of Trypsin Activity by a New Biosensing System Based on the Enzymatic Degradation and the Destructive Nature of Trypsin , 2017, International Journal of Peptide Research and Therapeutics.

[10]  Kun-Lin Yang,et al.  Recent developments in protease activity assays and sensors. , 2017, The Analyst.

[11]  Mark Bradley,et al.  Methylene blue not ferrocene: Optimal reporters for electrochemical detection of protease activity. , 2016, Biosensors & bioelectronics.

[12]  José G. Pérez-Silva,et al.  The Degradome database: expanding roles of mammalian proteases in life and disease , 2015, Nucleic Acids Res..

[13]  Fritz Scholz,et al.  Voltammetric techniques of analysis: the essentials , 2015, ChemTexts.

[14]  F. Oriente,et al.  Substrate-zymography: a still worthwhile method for gelatinases analysis in biological samples , 2015, Clinical chemistry and laboratory medicine.

[15]  Feng Gao,et al.  Application of an Electrochemical Immunosensor with a MWCNT/PDAA Modified Electrode for Detection of Serum Trypsin , 2014, Sensors.

[16]  S. Percival,et al.  Proteases and Delayed Wound Healing. , 2013, Advances in wound care.

[17]  A. Masood,et al.  Role of proteases in cancer: A review , 2012 .

[18]  Margarita Stoytcheva,et al.  Square wave voltammetric determination of trypsin activity , 2012 .

[19]  G. Cauet,et al.  Cleavage-sensing redox peptide monolayers for the rapid measurement of the proteolytic activity of trypsin and alpha-thrombin enzymes. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[20]  I. Boyaci,et al.  Rapid Method for Quantitative Determination of Proteolytic Activity with Cyclic Voltammetry , 2010 .

[21]  N. Jaffrezic‐Renault,et al.  Urease-gelatin interdigitated microelectrodes for the conductometric determination of protease activity. , 2008, Biosensors & bioelectronics.

[22]  C. López-Otín,et al.  Proteases: Multifunctional Enzymes in Life and Disease* , 2008, Journal of Biological Chemistry.

[23]  Lei Liu,et al.  Electrochemical approach to detect apoptosis. , 2008, Analytical chemistry.

[24]  Yuehe Lin,et al.  Electrochemical proteolytic beacon for detection of matrix metalloproteinase activities. , 2006, Journal of the American Chemical Society.

[25]  S. Cosnier,et al.  Protease amperometric sensor. , 2006, Analytical chemistry.

[26]  Isabelle Migneault,et al.  Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. , 2004, BioTechniques.

[27]  X. Puente,et al.  Human and mouse proteases: a comparative genomic approach , 2003, Nature Reviews Genetics.

[28]  A. Bigi,et al.  Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. , 2001, Biomaterials.

[29]  W. Eaglstein,et al.  Causes and effects of the chronic inflammation in venous leg ulcers. , 2000, Acta dermato-venereologica. Supplementum.

[30]  G. Schultz,et al.  Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors , 1999, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[31]  J. Feijen,et al.  Glutaraldehyde as a crosslinking agent for collagen-based biomaterials , 1995 .

[32]  A. Vaheri,et al.  Proteolytic activity in leg ulcer exudate , 1993, Experimental dermatology.

[33]  O. Saksela Radial caseinolysis in agarose: a simple method for detection of plasminogen activator in the presence of inhibitory substances and serum. , 1981, Analytical biochemistry.

[34]  J. Felber,et al.  Radioimmunoassay of human plasma trypsin. , 1976, Biochimica et biophysica acta.

[35]  R. Khalil,et al.  Zymography as a Research Tool in the Study of Matrix Metalloproteinase Inhibitors. , 2017, Methods in molecular biology.

[36]  E. Kessler,et al.  Elastinolytic and proteolytic enzymes. , 2014, Methods in molecular biology.

[37]  S. Cosnier,et al.  Electrochemical Sensing of Trypsin Activity , 2012 .