Interval observer for Chlorella vulgaris culture in a photobioreactor

Microalgae present a very promising alternative for carbon dioxide mitigation strategies. These unicellular photosynthetic microorganisms fix carbon dioxide efficiently, converting it into biomass and high-value compounds. One of the control system challenges is to maximize carbon dioxide consumption by maintaining the cellular concentration to an optimal value in the exponential phase. In this paper, we propose a software sensor for the biomass concentration of Chlorella vulgaris culture in a continuous photobioreactor with uncertain model parameters. From Total Inorganic Carbon measurements, the interval observer can provide a guaranteed upper and lower bound for the cellular concentration using the available interval of the uncertain initial condition, model parameters and measurements. Numerical simulations and experimental validation are included to illustrate the performance of the proposed estimation strategy.

[1]  C. Soccol,et al.  Potential carbon dioxide fixation by industrially important microalgae. , 2010, Bioresource technology.

[2]  Jiann-Yang Hwang,et al.  Carbon Dioxide Mitigation by Microalgal Photosynthesis , 2003 .

[3]  Chih-Sheng Lin,et al.  The air‐lift photobioreactors with flow patterning for high‐density cultures of microalgae and carbon dioxide removal , 2009 .

[4]  Carbon Capture Using The Microalgae Chlorella Vulgaris in a Packed Bubble Column Photobioreactor , 2010 .

[5]  A. Isambert,et al.  Identification of the growth model parameters for a culture of Chlorella vulgaris in a photobioreactor , 2010 .

[6]  Hal L. Smith,et al.  Monotone Dynamical Systems: An Introduction To The Theory Of Competitive And Cooperative Systems (Mathematical Surveys And Monographs) By Hal L. Smith , 1995 .

[7]  Jo‐Shu Chang,et al.  Perspectives on microalgal CO₂-emission mitigation systems--a review. , 2011, Biotechnology advances.

[8]  Mir-Akbar Hessami,et al.  A study of methods of carbon dioxide capture and sequestration: the sustainability of a photosynthetic bioreactor approach , 2004 .

[9]  Claude-Gilles Dussap,et al.  A simplified monodimensional approach for modeling coupling between radiant light transfer and growth kinetics in photobioreactors , 1995 .

[10]  A. Vande Wouwer,et al.  Improving continuous–discrete interval observers with application to microalgae-based bioprocesses , 2009 .

[11]  J. Cuello,et al.  Selection of optimal microalgae species for CO 2 sequestration , 2003 .

[12]  G. Kleinheinz,et al.  Use of Chlorella vulgaris for CO2 mitigation in a photobioreactor , 2002, Journal of Industrial Microbiology and Biotechnology.

[13]  Jian Li,et al.  Online estimation of stirred-tank microalgal photobioreactor cultures based on dissolved oxygen measurement , 2003 .

[14]  J. Dewulf,et al.  Enhanced CO(2) fixation and biofuel production via microalgae: recent developments and future directions. , 2010, Trends in biotechnology.

[15]  C. Lan,et al.  CO2 bio-mitigation using microalgae , 2008, Applied Microbiology and Biotechnology.

[16]  D. Dochain,et al.  Interval observers for biochemical processes with uncertain kinetics and inputs. , 2005, Mathematical biosciences.

[17]  N. Usui,et al.  The biological CO2 fixation and utilization project by RITE(1) — Highly-effective photobioreactor system — , 1997 .

[18]  Stéphanie Nouals,et al.  Modélisation d'un photobioréacteur pour le pilotage de microalgues , 2000 .

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  Denis Dochain,et al.  ADAPTIVE CONTROL OF BIOREACTORS , 1990 .

[22]  Jian Li,et al.  State and parameter estimation of microalgal photobioreactor cultures based on local irradiance measurement. , 2003, Journal of biotechnology.