A Time-split Discontinuous Galerkin Transport Scheme for Global Atmospheric Model

Abstract A time-split transport scheme has been developed for the high-order multiscale atmospheric model (HOMAM). The spacial discretization of HOMAM is based on the discontinuous Galerkin method, combining the 2D horizontal elements on the cubed-sphere surface and 1D vertical elements in a terrain-following height-based coordinate. The accuracy of the time-splitting scheme is tested with a set of new benchmark 3D advection problems. The split time-integrators are based on the Strang-type operator-split method. The convergence of standard error norms shows a second-order accuracy with the smooth scalar field, irrespective of a particular time- integrator. The results with the split scheme is comparable with that of the established models.

[1]  Juan Simarro,et al.  A semi‐implicit non‐hydrostatic dynamical kernel using finite elements in the vertical discretization , 2012 .

[2]  Christiane Jablonowski,et al.  MCore: A non-hydrostatic atmospheric dynamical core utilizing high-order finite-volume methods , 2012, J. Comput. Phys..

[3]  T. Clark A small-scale dynamic model using a terrain-following coordinate transformation , 1977 .

[4]  Francis X. Giraldo,et al.  Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: Limited-area mode , 2012, J. Comput. Phys..

[5]  Stephen J. Thomas,et al.  A Discontinuous Galerkin Transport Scheme on the Cubed Sphere , 2005 .

[6]  Masaki Satoh,et al.  A New Approach to Atmospheric General Circulation Model: Global Cloud Resolving Model NICAM and its Computational Performance , 2008, SIAM J. Sci. Comput..

[7]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[8]  Robert Klöfkorn,et al.  Horizontally Explicit and Vertically Implicit (HEVI) Time Discretization Scheme for a Discontinuous Galerkin Nonhydrostatic Model , 2015 .

[9]  Bernardo Cockburn An introduction to the Discontinuous Galerkin method for convection-dominated problems , 1998 .

[10]  Andreas Dedner,et al.  Comparison of dynamical cores for NWP models: comparison of COSMO and Dune , 2013 .

[11]  Mark A. Taylor,et al.  CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model , 2012, Int. J. High Perform. Comput. Appl..

[12]  Richard C. J. Somerville,et al.  On the use of a coordinate transformation for the solution of the Navier-Stokes equations , 1975 .

[13]  James Kent,et al.  Dynamical core model intercomparison project: Tracer transport test cases , 2014 .

[14]  P. Lauritzen,et al.  Emerging numerical methods for atmospheric modeling , 2011 .

[15]  H. Tufo,et al.  Computational aspects of a scalable high-order discontinuous Galerkin atmospheric dynamical core , 2009 .

[16]  Todd D. Ringler,et al.  A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering , 2012 .

[17]  G. Zängl,et al.  The ICON (ICOsahedral Non‐hydrostatic) modelling framework of DWD and MPI‐M: Description of the non‐hydrostatic dynamical core , 2015 .