On directable nondeterministic trapped automata

A finite automaton is said to be directable if it has an input word, a directing word, which takes it from every state into the same state. For nondeterministic (n.d.) automata, directability can be generalized in several ways. In [8], three such notions, D1-, D2-, and D3-directability, are introduced. In this paper, we introduce the trapped n.d. automata, and for each i = 1, 2, 3, present lower and upper bounds for the lengths of the shortest Di-directing words of n-state Di-directable trapped n.d. automata. It turns out that for this special class of n.d. automata, better bounds can be found than for the general case, and some of the obtained bounds are sharp.

[1]  Ján Cerný,et al.  On directable automata , 1971, Kybernetika (Praha).

[2]  Václav Koubek,et al.  A Game of Composing Binary Relations , 1982, RAIRO Theor. Informatics Appl..

[3]  I. K. Rystsov,et al.  Reset Words for Commutative and Solvable Automata , 1997, Theor. Comput. Sci..

[4]  Balázs Imreh,et al.  Some Remarks on Directable Automata , 1995, Acta Cybern..

[5]  Balázs Imreh,et al.  Directable Nondeterministic Automata , 1999, Acta Cybern..

[6]  David Eppstein,et al.  Reset Sequences for Monotonic Automata , 1990, SIAM J. Comput..

[7]  Arturo Carpi,et al.  On Synchronizing Unambiguous Automata , 1988, Theor. Comput. Sci..

[8]  Miroslav Ciric,et al.  Decompositions of Automata and Transition Semigroups , 1998, Acta Cybern..

[9]  Hans-Dieter Burkhard,et al.  Zum Längenproblem homogener Experimente an determinierten und nicht-deterministischen Automaten , 1976, J. Inf. Process. Cybern..

[10]  Jean-Éric Pin,et al.  Sur un Cas Particulier de la Conjecture de Cerny , 1978, ICALP.