Electronic structures and magnetocrystalline anisotropy energies of ordered Co 1- x Ni x alloys: a first principles study

The electronic structures and magnetocrystalline anisotropy (MA) of ordered hexagonal close-packed (hcp) Co1−xNix alloys are studied using the full-potential linear-augmented-plane-wave (FLAPW) method with generalized gradient approximation (GGA). Great changes of magnetocrystalline anisotropy energy (MAE) are gained with different Ni compositions. Also, in-plane magnetocrystalline anisotropy is obtained for Co15Ni in which the Snoek's limit is exceeded. It is found that the changes of the symmetry of the crystal field on Ni induce small variations in band structures around the Fermi level under different compositions, which plays an important role in modulating the magnetization direction, where the hybridization between Co-3d and Ni-3d orbits is of special importance in deciding the magnetocrystalline anisotropy of itinerant states. The rigid-band model is inapplicable to explain the evolution of magnetocrystalline anisotropy energy with Ni composition, and it is also inadequate to predict the magnetocrystalline anisotropy energy through the anisotropy of the orbital magnetic moment.

[1]  Tao Wang,et al.  Microwave permeability of flake-shaped FeCuNbSiB particle composite with rotational orientation , 2010 .

[2]  I. Turek,et al.  Residual resistivity and its anisotropy in random CoNi and CuNi ferromagnetic alloys , 2010 .

[3]  庞华,et al.  First-principles study on the magnetism of different dimensional Ru systems , 2009 .

[4]  F. Wen,et al.  Bianisotropy Picture of Higher Permeability at Higher Frequencies , 2008 .

[5]  Qiao Liang,et al.  Influence of shape anisotropy on microwave complex permeability in carbonyl iron flakes/epoxy resin composites , 2008 .

[6]  G. Guo,et al.  Systematic ab initio study of the magnetic and electronic properties of all 3d transition metal linear and zigzag nanowires , 2007, 0708.0973.

[7]  S. Heinze,et al.  Giant magnetocrystalline anisotropies of 4d transition-metal monowires. , 2006, Physical review letters.

[8]  O. Eriksson,et al.  Magnetic anisotropy of L 10 FePt and Fe1-x Mnx Pt , 2005 .

[9]  Wen-Chin Lin,et al.  Effect of magnetic alloying on magnetic anisotropy in ultrathin fcc Ni-like films , 2005 .

[10]  B. Johansson,et al.  Calculation of uniaxial magnetic anisotropy energy of tetragonal and trigonal Fe, Co, and Ni , 2004 .

[11]  K. Kern,et al.  Giant Magnetic Anisotropy of Single Cobalt Atoms and Nanoparticles , 2003, Science.

[12]  O. Mryasov,et al.  Coulomb correlations and magnetic anisotropy in orderedL10CoPt and FePt alloys , 2002, cond-mat/0210157.

[13]  R. Nieminen,et al.  Magnetic anisotropy in Ni2MnGa , 2002 .

[14]  A. G. Whittaker,et al.  Enhanced magnetocrystalline anisotropy in deposited cobalt clusters , 2002 .

[15]  M. Richter,et al.  Itinerant-electron magnetocrystalline anisotropy energy of YCo 5 and related compounds , 2001 .

[16]  B. Johansson,et al.  Large magnetocrystalline anisotropy in bilayer transition metal phases from first-principles full-potential calculations - art. no. 144409 , 2001 .

[17]  M. Alouani,et al.  Perpendicular magnetic anisotropy of binary alloys: A total-energy calculation , 2000 .

[18]  T. Sham,et al.  ELECTRONIC STRUCTURE OF NI-CU ALLOYS : THE D-ELECTRON CHARGE DISTRIBUTION , 1998 .

[19]  L. Aymard,et al.  Production of CoNi alloys by mechanical-alloying , 1996 .

[20]  Johansson,et al.  Total energy calculation of the magnetocrystalline anisotropy energy in the ferromagnetic 3d metals. , 1995, Physical review letters.

[21]  H. Fujiwara,et al.  Magnetic anisotropy of obliquely vapor-deposited Co-Ni films , 1991 .

[22]  Kelly,et al.  First-principles calculation of the magnetocrystalline anisotropy energy of iron, cobalt, and nickel. , 1990, Physical review. B, Condensed matter.

[23]  R. L. Cohen,et al.  Density of States in CuNi Alloys , 1972 .