Experimental annotation of post-translational features and translated coding regions in the pathogen Salmonella Typhimurium

[1]  L. Holm,et al.  The Pfam protein families database , 2011, Nucleic Acids Res..

[2]  T. Dandekar,et al.  A metabolomics and proteomics study of the adaptation of Staphylococcus aureus to glucose starvation. , 2011, Molecular bioSystems.

[3]  Samuel H. Payne,et al.  A proteogenomic update to Yersinia: enhancing genome annotation , 2010, BMC Genomics.

[4]  Ryan S. Mueller,et al.  Computational prediction and experimental validation of signal peptide cleavages in the extracellular proteome of a natural microbial community. , 2010, Journal of proteome research.

[5]  Carrie D. Nicora,et al.  Proteomic Detection of Non-Annotated Protein-Coding Genes in Pseudomonas fluorescens Pf0-1 , 2009, PloS one.

[6]  Tin Wee Tan,et al.  A comprehensive assessment of N-terminal signal peptides prediction methods , 2009, BMC Bioinformatics.

[7]  H. Ochman,et al.  Short-Term Signatures of Evolutionary Change in the Salmonella enterica Serovar Typhimurium 14028 Genome , 2009, Journal of bacteriology.

[8]  Ronald C. Taylor,et al.  Proteome of Salmonella Enterica Serotype Typhimurium Grown in a Low Mg/pH Medium. , 2009, Journal of proteomics & bioinformatics.

[9]  J. Reilly,et al.  B. subtilis ribosomal proteins: structural homology and post-translational modifications. , 2009, Journal of proteome research.

[10]  R. Zuerner,et al.  Global Proteome Analysis of Leptospira interrogans , 2009, Journal of proteome research.

[11]  Patrick Wincker,et al.  Generation and analysis of a 29,745 unique Expressed Sequence Tags from the Pacific oyster (Crassostrea gigas) assembled into a publicly accessible database: the GigasDatabase , 2009, BMC Genomics.

[12]  Jean Armengaud,et al.  A perfect genome annotation is within reach with the proteomics and genomics alliance. , 2009, Current opinion in microbiology.

[13]  M. MacCoss,et al.  Proteomic discovery of previously unannotated, rapidly evolving seminal fluid genes in Drosophila. , 2009, Genome research.

[14]  Navdeep Jaitly,et al.  Decon2LS: An open-source software package for automated processing and visualization of high resolution mass spectrometry data , 2009, BMC Bioinformatics.

[15]  Richard D. Smith,et al.  Global Systems-Level Analysis of Hfq and SmpB Deletion Mutants in Salmonella: Implications for Virulence and Global Protein Translation , 2009, PloS one.

[16]  P. Siguier,et al.  Alliance of Proteomics and Genomics to Unravel the Specificities of Sahara Bacterium Deinococcus deserti , 2009, PLoS genetics.

[17]  James C. Wright,et al.  Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger , 2009, BMC Genomics.

[18]  Hyunjin Yoon,et al.  Coordinated Regulation of Virulence during Systemic Infection of Salmonella enterica Serovar Typhimurium , 2009, PLoS pathogens.

[19]  Samuel H. Payne,et al.  Discovery and revision of Arabidopsis genes by proteogenomics , 2008, Proceedings of the National Academy of Sciences.

[20]  Tatiana A. Tatusova,et al.  The National Center for Biotechnology Information's Protein Clusters Database , 2008, Nucleic Acids Res..

[21]  Richard D. Smith,et al.  De novo sequencing of unique sequence tags for discovery of post-translational modifications of proteins. , 2008, Analytical chemistry.

[22]  Michael J MacCoss,et al.  Use of shotgun proteomics for the identification, confirmation, and correction of C. elegans gene annotations. , 2008, Genome research.

[23]  J. Vogel,et al.  Deep Sequencing Analysis of Small Noncoding RNA and mRNA Targets of the Global Post-Transcriptional Regulator, Hfq , 2008, PLoS genetics.

[24]  Daniel B. Goodman,et al.  Comparative proteogenomics: combining mass spectrometry and comparative genomics to analyze multiple genomes. , 2008, Genome research.

[25]  Ronald J Moore,et al.  Proteome-wide identification of proteins and their modifications with decreased ambiguities and improved false discovery rates using unique sequence tags. , 2008, Analytical chemistry.

[26]  P. Tonge,et al.  Inhibitors of FabI, an enzyme drug target in the bacterial fatty acid biosynthesis pathway. , 2008, Accounts of chemical research.

[27]  Robert D. Finn,et al.  The Pfam protein families database , 2007, Nucleic Acids Res..

[28]  Richard D. Smith,et al.  Whole proteome analysis of post-translational modifications: applications of mass-spectrometry for proteogenomic annotation. , 2007, Genome research.

[29]  F. Sherman,et al.  Methylation of proteins involved in translation , 2007, Molecular microbiology.

[30]  Richard D. Smith,et al.  Proteomic Analysis of Salmonella enterica Serovar Typhimurium Isolated from RAW 264.7 Macrophages , 2006, Journal of Biological Chemistry.

[31]  Fred Heffron,et al.  Analysis of the Salmonella typhimurium Proteome through Environmental Response toward Infectious Conditions* , 2006, Molecular & Cellular Proteomics.

[32]  Eric W. Deutsch,et al.  The PeptideAtlas project , 2005, Nucleic Acids Res..

[33]  Anders Krogh,et al.  Large-scale prokaryotic gene prediction and comparison to genome annotation , 2005, Bioinform..

[34]  D. Siegele Universal Stress Proteins in Escherichia coli , 2005, Journal of bacteriology.

[35]  Douglas S Rehder,et al.  Identification and characterization of deamidation sites in the conserved regions of human immunoglobulin gamma antibodies. , 2005, Analytical chemistry.

[36]  Duane Szafron,et al.  BASys: a web server for automated bacterial genome annotation , 2005, Nucleic Acids Res..

[37]  J. Reilly,et al.  Deamidation as a Consequence of β-Elimination of Phosphopeptides , 2005 .

[38]  T. Brettin,et al.  Proteomic analysis of Bacillus anthracis Sterne vegetative cells. , 2005, Biochimica et biophysica acta.

[39]  P. Pevzner,et al.  PepNovo: de novo peptide sequencing via probabilistic network modeling. , 2005, Analytical chemistry.

[40]  Jacob D. Jaffe,et al.  The complete genome and proteome of Mycoplasma mobile. , 2004, Genome research.

[41]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[42]  Robertson Craig,et al.  TANDEM: matching proteins with tandem mass spectra. , 2004, Bioinformatics.

[43]  T. Meinnel,et al.  Protein N-terminal methionine excision , 2004, Cellular and Molecular Life Sciences CMLS.

[44]  M. Mann,et al.  Trypsin Cleaves Exclusively C-terminal to Arginine and Lysine Residues*S , 2004, Molecular & Cellular Proteomics.

[45]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[46]  Jacob D. Jaffe,et al.  Proteogenomic mapping as a complementary method to perform genome annotation , 2004, Proteomics.

[47]  R. Giegerich,et al.  GenDB--an open source genome annotation system for prokaryote genomes. , 2003, Nucleic acids research.

[48]  R. Aebersold,et al.  Mass spectrometry-based proteomics , 2003, Nature.

[49]  Alexey I Nesvizhskii,et al.  Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. , 2002, Analytical chemistry.

[50]  Måns Ehrenberg,et al.  The hemK gene in Escherichia coli encodes the N5‐glutamine methyltransferase that modifies peptide release factors , 2002, The EMBO journal.

[51]  Lincoln Stein,et al.  Genome annotation: from sequence to biology , 2001, Nature Reviews Genetics.

[52]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[53]  Kim Rutherford,et al.  Artemis: sequence visualization and annotation , 2000, Bioinform..

[54]  Erin Beck,et al.  The comprehensive microbial resource , 2000, Nucleic Acids Res..

[55]  F. McLafferty,et al.  Automated reduction and interpretation of , 2000, Journal of the American Society for Mass Spectrometry.

[56]  D. N. Perkins,et al.  Probability‐based protein identification by searching sequence databases using mass spectrometry data , 1999, Electrophoresis.

[57]  S. Salzberg,et al.  Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.

[58]  L. Bossi,et al.  Inducible prophages contribute to Salmonella virulence in mice , 1999, Molecular microbiology.

[59]  J. Reilly,et al.  Observation of Escherichia coli ribosomal proteins and their posttranslational modifications by mass spectrometry. , 1999, Analytical biochemistry.

[60]  Sezgin Erdoğan,et al.  Environmental regulation of Salmonella pathogenicity island 2 gene expression , 1999, Molecular microbiology.

[61]  Erik L. L. Sonnhammer,et al.  A Hidden Markov Model for Predicting Transmembrane Helices in Protein Sequences , 1998, ISMB.

[62]  E. Stadtman,et al.  Modification of protein surface hydrophobicity and methionine oxidation by oxidative systems. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[63]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[64]  E. Stadtman,et al.  Methionine residues as endogenous antioxidants in proteins. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[65]  J. Yates,et al.  Mining genomes: correlating tandem mass spectra of modified and unmodified peptides to sequences in nucleotide databases. , 1995, Analytical chemistry.

[66]  J. Yates,et al.  An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database , 1994, Journal of the American Society for Mass Spectrometry.

[67]  S. Miller,et al.  Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[68]  J. Tobias,et al.  The N-end rule in bacteria. , 1991, Science.

[69]  A. B. Robinson,et al.  Distribution of glutamine and asparagine residues and their near neighbors in peptides and proteins. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[70]  F. McLafferty,et al.  High-resolution electrospray mass spectra of large molecules , 1991 .

[71]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[72]  P. Dessen,et al.  Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[73]  P. Wingfield,et al.  N-terminal methionine-specific peptidase in Salmonella typhimurium. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[74]  K. Myambo,et al.  Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure , 1987, Journal of bacteriology.

[75]  R. Laursen,et al.  Location of the site of methylation in elongation factor Tu , 1979, FEBS letters.

[76]  P. Anderson,et al.  Reversible reaction of cyanate with a reactive sulfhydryl group at the glutamine binding site of carbamyl phosphate synthetase. , 1975, Biochemistry.

[77]  A. Meister,et al.  Effect of potassium cyanate on the catalytic activities of carbamyl phosphate synthetase. , 1973, Biochemical and biophysical research communications.

[78]  Richard D Smith,et al.  Omics.pnl.gov: A Portal for the Distribution and Sharing of Multi-Disciplinary Pan-Omics Information. , 2010, Journal of proteomics & bioinformatics.

[79]  Richard D. Smith,et al.  Proteogenomics: needs and roles to be filled by proteomics in genome annotation. , 2008, Briefings in functional genomics & proteomics.

[80]  J. Reilly,et al.  A top-down/bottom-up study of the ribosomal proteins of Caulobacter crescentus. , 2007, Journal of proteome research.

[81]  F. Frottin,et al.  The proteomics of N-terminal methionine cleavage , 2006 .

[82]  J. Reilly,et al.  Deamidation as a consequence of beta-elimination of phosphopeptides. , 2005, Analytical chemistry.

[83]  F. Chang Methylation of ribosomal proteins during ribosome assembly in Escherichia coli , 2004, Molecular and General Genetics MGG.

[84]  Sean R. Eddy,et al.  Rfam: an RNA family database , 2003, Nucleic Acids Res..

[85]  Owen White,et al.  The TIGRFAMs database of protein families , 2003, Nucleic Acids Res..

[86]  M. Paetzel,et al.  Signal peptidases. , 2002, Chemical reviews.

[87]  M. Mann,et al.  Use of mass spectrometry-derived data to annotate nucleotide and protein sequence databases. , 2001, Trends in biochemical sciences.

[88]  S. Clarke,et al.  RNA and protein interactions modulated by protein arginine methylation. , 1998, Progress in nucleic acid research and molecular biology.

[89]  S. Brunak,et al.  Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. , 1997, Protein engineering.

[90]  G. von Heijne,et al.  Sequence determinants of cytosolic N-terminal protein processing. , 1986, European journal of biochemistry.