Computational docking simulations of a DNA-aptamer for argininamide and related ligands

The binding properties of sequence-specific nucleic acids (aptamers) to low-molecular-weight ligands, macromolecules and even cells attract substantial scientific interest. These ligand-DNA complexes found different applications for sensing, nanomedicine, and DNA nanotechnology. Structural information on the aptamer-ligand complexes is, however, scarce, even though it would open-up the possibilities to design novel features in the complexes. In the present study we apply molecular docking simulations to probe the features of an experimentally documented L-argininamide aptamer complex. The docking simulations were performed using AutoDock 4.0 and YASARA Structure software, a well-suited program for following intermolecular interactions and structures of biomolecules, including DNA. We explored the binding features of a DNA aptamer to L-argininamide and to a series of arginine derivatives or arginine-like ligands. We find that the best docking results are obtained after an energy-minimization of the parent ligand-aptamer complexes. The calculated binding energies of all mono-substituted guanidine-containing ligands show a good correlation with the experimentally determined binding constants. The results provide valuable guidelines for the application of docking simulations for the prediction of aptamer-ligand structures, and for the design of novel features of ligand-aptamer complexes.

[1]  P. Kollman,et al.  How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? , 2000 .

[2]  David S. Goodsell,et al.  A semiempirical free energy force field with charge‐based desolvation , 2007, J. Comput. Chem..

[3]  Masaaki Kawata,et al.  Particle mesh Ewald method for three-dimensional systems with two-dimensional periodicity , 2001 .

[4]  Roger J.-B. Wets,et al.  Minimization by Random Search Techniques , 1981, Math. Oper. Res..

[5]  Jonathan B. Chaires,et al.  Molecular Docking of Intercalators and Groove-Binders to Nucleic Acids Using Autodock and Surflex , 2008, J. Chem. Inf. Model..

[6]  I. Willner,et al.  Functionalized DNA nanostructures. , 2012, Chemical reviews.

[7]  Lutgarde M. C. Buydens,et al.  Multivariate analysis of a data matrix containing A‐DNA and B‐DNA dinucleoside monophosphate steps: Multidimensional Ramachandran plots for nucleic acids , 1998 .

[8]  Hanoch Senderowitz,et al.  Docking Studies on DNA Intercalators , 2014, J. Chem. Inf. Model..

[9]  J. Šponer,et al.  Single Stranded Loops of Quadruplex DNA As Key Benchmark for Testing Nucleic Acids Force Fields. , 2009, Journal of chemical theory and computation.

[10]  G. Mayer The chemical biology of aptamers. , 2009, Angewandte Chemie.

[11]  D. Shangguan,et al.  Development of DNA aptamers using Cell-SELEX , 2010, Nature Protocols.

[12]  Dmitry M. Kolpashchikov,et al.  Binary probes for nucleic acid analysis. , 2010, Chemical reviews.

[13]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[14]  G. Tocchini-Valentini,et al.  In vitro selection of dopamine RNA ligands. , 1997, Biochemistry.

[15]  D. Patel,et al.  Structure, recognition and discrimination in RNA aptamer complexes with cofactors, amino acids, drugs and aminoglycoside antibiotics. , 2000, Journal of biotechnology.

[16]  Paulo A. Netz,et al.  Docking Studies on DNA-Ligand Interactions: Building and Application of a Protocol To Identify the Binding Mode , 2009, J. Chem. Inf. Model..

[17]  Darko Stefanovic,et al.  A deoxyribozyme-based molecular automaton , 2003, Nature Biotechnology.

[18]  Friedrich C Simmel,et al.  Nucleic acid based molecular devices. , 2011, Angewandte Chemie.

[19]  J. Šponer,et al.  Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Conformers , 2007 .

[20]  J. Reif,et al.  DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Gert Vriend,et al.  Making optimal use of empirical energy functions: Force‐field parameterization in crystal space , 2004, Proteins.

[22]  Hao Yan,et al.  A DNA nanostructure platform for directed assembly of synthetic vaccines. , 2012, Nano letters.

[23]  Batsal Devkota,et al.  Motion of transfer RNA from the A/T state into the A‐site using docking and simulations , 2012, Proteins.

[24]  G. Roelfes,et al.  Enantioselective CuII-Catalyzed Diels–Alder and Michael Addition Reactions in Water Using Bio-Inspired Triazacyclophane-Based Ligands , 2011 .

[25]  Maria C. DeRosa,et al.  Challenges and Opportunities for Small Molecule Aptamer Development , 2012, Journal of nucleic acids.

[26]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[27]  I. Willner,et al.  Functional nucleic acid nanostructures and DNA machines. , 2010, Current opinion in biotechnology.

[28]  Wen-Yih Chen,et al.  Molecular dynamics simulation of the induced-fit binding process of DNA aptamer and L-argininamide. , 2012, Biotechnology journal.

[29]  Remo Rohs,et al.  Molecular flexibility in ab initio drug docking to DNA: binding-site and binding-mode transitions in all-atom Monte Carlo simulations , 2005, Nucleic acids research.

[30]  Eric Westhof,et al.  The Dynamic Landscapes of RNA Architecture , 2009, Cell.

[31]  N. Seeman,et al.  A robust DNA mechanical device controlled by hybridization topology , 2002, Nature.

[32]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998 .

[33]  Qi Zhang,et al.  Resolving the Motional Modes That Code for RNA Adaptation , 2006, Science.

[34]  D. Patel,et al.  Encapsulating an amino acid in a DNA fold , 1996, Nature Structural Biology.

[35]  Holger Gohlke,et al.  DrugScoreRNAKnowledge-Based Scoring Function To Predict RNA-Ligand Interactions , 2007, J. Chem. Inf. Model..

[36]  I. Willner,et al.  From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. , 2014, Chemical reviews.

[37]  Wei Zhang,et al.  A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations , 2003, J. Comput. Chem..

[38]  Jon M. Maguire,et al.  Prediction of noncovalent Drug/DNA interaction using computational docking models: Studies with over 1350 launched drugs , 2013, Environmental and molecular mutagenesis.

[39]  A. Phan,et al.  DNA architecture: from G to Z. , 2006, Current opinion in structural biology.

[40]  Michael Famulok,et al.  Aptamer modules as sensors and detectors. , 2011, Accounts of chemical research.

[41]  A. Frankel,et al.  Identification of two novel arginine binding DNAs. , 1995, The EMBO journal.

[42]  Itamar Willner,et al.  DNA-based machines. , 2006, Organic & biomolecular chemistry.

[43]  Paola Bisignano,et al.  Molecular dynamics analysis of the wild type and dF508 mutant structures of the human CFTR-nucleotide binding domain 1. , 2010, Biochimie.

[44]  Christopher I. Bayly,et al.  Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: II. Parameterization and validation , 2002, J. Comput. Chem..

[45]  M. Davies,et al.  Chemistry and formulations for siRNA therapeutics. , 2013, Chemical Society reviews.

[46]  Paulo A. Netz,et al.  Benzothiadiazoles as DNA intercalators: Docking and simulation , 2012 .

[47]  I. Andricioaei,et al.  Discovery of selective bioactive small molecules by targeting an RNA dynamic ensemble. , 2011, Nature chemical biology.

[48]  Holger Gohlke,et al.  HIV-1 TAR RNA Spontaneously Undergoes Relevant Apo-to-Holo Conformational Transitions in Molecular Dynamics and Constrained Geometrical Simulations , 2010, J. Chem. Inf. Model..

[49]  G. Vriend,et al.  Fast empirical pKa prediction by Ewald summation. , 2006, Journal of molecular graphics & modelling.

[50]  Kazuo Tanaka,et al.  DNA logic gates. , 2004, Journal of the American Chemical Society.

[51]  Holger Gohlke,et al.  Molecular recognition of RNA: challenges for modelling interactions and plasticity , 2009, Journal of molecular recognition : JMR.

[52]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[53]  Wade W Grabow,et al.  Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine , 2011, Nature Protocols.

[54]  Itamar Willner,et al.  Electronic aptamer-based sensors. , 2007, Angewandte Chemie.

[55]  Paul J Hergenrother,et al.  Targeting RNA with small molecules. , 2008, Chemical reviews.

[56]  Dan Luo,et al.  DNA nanomedicine: Engineering DNA as a polymer for therapeutic and diagnostic applications☆ , 2010, Advanced Drug Delivery Reviews.

[57]  J. Feigon,et al.  Aptamer structures from A to ζ , 1996 .

[58]  Jiří Šponer,et al.  Structural Dynamics of Thrombin-Binding DNA Aptamer d(GGTTGGTGTGGTTGG) Quadruplex DNA Studied by Large-Scale Explicit Solvent Simulations. , 2010, Journal of chemical theory and computation.

[59]  Roland L. Dunbrack,et al.  Assignment of protonation states in proteins and ligands: combining pKa prediction with hydrogen bonding network optimization. , 2012, Methods in molecular biology.

[60]  L. Mazzarella,et al.  Duplex-quadruplex motifs in a peculiar structural organization cooperatively contribute to thrombin binding of a DNA aptamer. , 2013, Acta crystallographica. Section D, Biological crystallography.

[61]  V. Malashkevich,et al.  An RNA aptamer possessing a novel monovalent cation-mediated fold inhibits lysozyme catalysis by inhibiting the binding of long natural substrates , 2014, RNA.

[62]  Yung Chang,et al.  Thermodynamic basis of chiral recognition in a DNA aptamer. , 2009, Physical chemistry chemical physics : PCCP.

[63]  R. Micura,et al.  The dynamic nature of RNA as key to understanding riboswitch mechanisms. , 2011, Accounts of chemical research.

[64]  Thomas L. James,et al.  Docking to RNA via Root-Mean-Square-Deviation-Driven Energy Minimization with Flexible Ligands and Flexible Targets , 2008, J. Chem. Inf. Model..

[65]  R. Nussinov,et al.  The role of dynamic conformational ensembles in biomolecular recognition. , 2009, Nature chemical biology.