Three-dimensional modelling and full-scale testing of stone arch bridges

Abstract Existing test results of full-scale in-service masonry arch bridges are analysed to determine appropriate material properties for the modelling of this structural type. Three-dimensional nonlinear finite element models of three masonry arch bridges are generated using a commercially available finite element package. The behaviour of the masonry is replicated by use of a solid element that can have its stiffness modified by the development of cracks and crushing. The fill is modelled as a Drucker–Prager material, and the interface between the masonry and the fill is characterised as a frictional contact surface. The bridges are modelled under service loads, and the model results are compared to the results of a program of field testing of the structures. It is found that the assumption of a reasonable set of material properties, based on visual observations of the material and construction of the structure, implemented through a program of three-dimensional nonlinear finite element analysis enable good predictions of the actual behaviour of a masonry arch bridge.