A POD-Galerkin reduced order model for a LES filtering approach

[1]  P. Lax,et al.  Systems of conservation laws , 1960 .

[2]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[3]  高等学校計算数学学報編輯委員会編 高等学校計算数学学報 = Numerical mathematics , 1979 .

[4]  J. P. V. Doormaal,et al.  ENHANCEMENTS OF THE SIMPLE METHOD FOR PREDICTING INCOMPRESSIBLE FLUID FLOWS , 1984 .

[5]  A. Gosman,et al.  Solution of the implicitly discretised reacting flow equations by operator-splitting , 1986 .

[6]  S. Orszag,et al.  Boundary conditions for incompressible flows , 1986 .

[7]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[8]  F. Brezzi,et al.  A discourse on the stability conditions for mixed finite element formulations , 1990 .

[9]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[10]  P. Moin,et al.  DIRECT NUMERICAL SIMULATION: A Tool in Turbulence Research , 1998 .

[11]  John P. Boyd,et al.  Two Comments on Filtering (Artificial Viscosity) for Chebyshev and Legendre Spectral and Spectral Element Methods , 1998 .

[12]  Hrvoje Jasak,et al.  A tensorial approach to computational continuum mechanics using object-oriented techniques , 1998 .

[13]  Julia S. Mullen,et al.  Filter-based stabilization of spectral element methods , 2001 .

[14]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[15]  Pierre Sagaut,et al.  Intermodal energy transfers in a proper orthogonal decomposition–Galerkin representation of a turbulent separated flow , 2003, Journal of Fluid Mechanics.

[16]  Hans Johnston,et al.  Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term , 2004 .

[17]  Volker John,et al.  Reference values for drag and lift of a two‐dimensional time‐dependent flow around a cylinder , 2004 .

[18]  Volker John,et al.  On the efficiency of linearization schemes and coupled multigrid methods in the simulation of a 3D flow around a cylinder , 2006 .

[19]  A. Dunca,et al.  On the Stolz-Adams Deconvolution Model for the Large-Eddy Simulation of Turbulent Flows , 2006, SIAM J. Math. Anal..

[20]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[21]  G. Rozza,et al.  On the stability of the reduced basis method for Stokes equations in parametrized domains , 2007 .

[22]  Jens Lohne Eftang,et al.  Reduced Basis Methods for Partial Differential Equations : Evaluation of multiple non-compliant flux-type output functionals for a non-affine electrostatics problem , 2008 .

[23]  Charles-Henri Bruneau,et al.  Enablers for robust POD models , 2009, J. Comput. Phys..

[24]  Gianluigi Rozza,et al.  Reduced basis methods for Stokes equations in domains with non-affine parameter dependence , 2009 .

[25]  Ali H. Nayfeh,et al.  On the stability and extension of reduced-order Galerkin models in incompressible flows , 2009 .

[26]  Matthew F. Barone,et al.  On the stability and convergence of a Galerkin reduced order model (ROM) of compressible flow with solid wall and far‐field boundary treatment , 2010 .

[27]  F. Chinesta,et al.  A Short Review in Model Order Reduction Based on Proper Generalized Decomposition , 2018 .

[28]  Annalisa Quaini,et al.  A Three-Dimensional Computational Fluid Dynamics Model of Regurgitant Mitral Valve Flow: Validation Against In Vitro Standards and 3D Color Doppler Methods , 2011, Cardiovascular engineering and technology.

[29]  C. Allery,et al.  Proper general decomposition (PGD) for the resolution of Navier-Stokes equations , 2011, J. Comput. Phys..

[30]  Leo G. Rebholz,et al.  Modular Nonlinear Filter Stabilization of Methods for Higher Reynolds Numbers Flow , 2012 .

[31]  Stefan Turek,et al.  Benchmark computations of 3D laminar flow around a cylinder with CFX, OpenFOAM and FeatFlow , 2012, Int. J. Comput. Sci. Eng..

[32]  Feriedoun Sabetghadam,et al.  α Regularization of the POD-Galerkin dynamical systems of the Kuramoto-Sivashinsky equation , 2012, Appl. Math. Comput..

[33]  Charbel Farhat,et al.  Stabilization of projection‐based reduced‐order models , 2012 .

[34]  Traian Iliescu,et al.  Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison , 2011, 1106.3585.

[35]  Charbel Farhat,et al.  The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows , 2012, J. Comput. Phys..

[36]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[37]  Leo G. Rebholz,et al.  Numerical study of a regularization model for incompressible flow with deconvolution-based adaptive nonlinear filtering , 2013 .

[38]  Traian Iliescu,et al.  An evolve‐then‐filter regularized reduced order model for convection‐dominated flows , 2015, 1506.07555.

[39]  Gianluigi Rozza,et al.  Model Order Reduction: a survey , 2016 .

[40]  Zhu Wang,et al.  Approximate Deconvolution Reduced Order Modeling , 2015, 1510.02726.

[41]  Gianluigi Rozza,et al.  Supremizer stabilization of POD–Galerkin approximation of parametrized steady incompressible Navier–Stokes equations , 2015 .

[42]  A. Quarteroni,et al.  Reduced Basis Methods for Partial Differential Equations: An Introduction , 2015 .

[43]  Karen Willcox,et al.  A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems , 2015, SIAM Rev..

[44]  J. Hesthaven,et al.  Certified Reduced Basis Methods for Parametrized Partial Differential Equations , 2015 .

[45]  G. Rozza,et al.  POD-Galerkin method for finite volume approximation of Navier–Stokes and RANS equations , 2016 .

[46]  Annalisa Quaini,et al.  Deconvolution‐based nonlinear filtering for incompressible flows at moderately large Reynolds numbers , 2016 .

[47]  Karen Veroy,et al.  Certified Reduced Basis Methods for Parametrized Distributed Elliptic Optimal Control Problems with Control Constraints , 2016, SIAM J. Sci. Comput..

[48]  Traian Iliescu,et al.  Regularized Reduced Order Models for a Stochastic Burgers Equation , 2017, 1701.01155.

[49]  Gianluigi Rozza,et al.  Model Reduction of Parametrized Systems , 2017 .

[50]  Annalisa Quaini,et al.  Computational reduction strategies for the detection of steady bifurcations in incompressible fluid-dynamics: Applications to Coanda effect in cardiology , 2017, J. Comput. Phys..

[51]  G. Rozza,et al.  POD-Galerkin reduced order methods for CFD using Finite Volume Discretisation: vortex shedding around a circular cylinder , 2017, 1701.03424.

[52]  Xuping Xie,et al.  Evolve Filter Stabilization Reduced-Order Model for Stochastic Burgers Equation , 2018, Fluids.

[53]  G. Rozza,et al.  Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier–Stokes equations , 2017, Computers & Fluids.

[54]  Zhu Wang,et al.  Numerical analysis of the Leray reduced order model , 2017, J. Comput. Appl. Math..

[55]  Traian Iliescu,et al.  An Evolve-Filter-Relax Stabilized Reduced Order Stochastic Collocation Method for the Time-Dependent Navier-Stokes Equations , 2019, SIAM/ASA J. Uncertain. Quantification.

[56]  Annalisa Quaini,et al.  A Finite Volume approximation of the Navier-Stokes equations with nonlinear filtering stabilization , 2019, Computers & Fluids.

[57]  Gianluigi Rozza,et al.  A reduced order variational multiscale approach for turbulent flows , 2018, Advances in Computational Mathematics.

[58]  Joris Degroote,et al.  Extension and comparison of techniques to enforce boundary conditions in Finite Volume POD-Galerkin reduced order models for fluid dynamic problems , 2019, ArXiv.

[59]  Traian Iliescu,et al.  A Leray regularized ensemble-proper orthogonal decomposition method for parameterized convection-dominated flows , 2017, IMA Journal of Numerical Analysis.

[60]  G. Rozza,et al.  On the comparison of LES data-driven reduced order approaches for hydroacoustic analysis , 2020, Computers & Fluids.

[61]  Gianluigi Rozza,et al.  Parametric POD-Galerkin Model Order Reduction for Unsteady-State Heat Transfer Problems , 2018, Communications in Computational Physics.

[62]  Gianluigi Rozza,et al.  Efficient geometrical parametrization for finite‐volume‐based reduced order methods , 2019, International Journal for Numerical Methods in Engineering.

[63]  Gianluigi Rozza,et al.  A Hybrid Reduced Order Method for Modelling Turbulent Heat Transfer Problems , 2019, Computers & Fluids.

[64]  Gianluigi Rozza,et al.  Data-Driven POD-Galerkin Reduced Order Model for Turbulent Flows , 2019, J. Comput. Phys..

[65]  P. Fischer,et al.  Towards model order reduction for fluid-thermal analysis , 2020 .

[66]  Longfei Li,et al.  A split-step finite-element method for incompressible Navier-Stokes equations with high-order accuracy up-to the boundary , 2019, J. Comput. Phys..

[67]  Gianluigi Rozza,et al.  Model Order Reduction , 2021 .

[68]  Antonio Huerta,et al.  Parametric solutions of turbulent incompressible flows in OpenFOAM via the proper generalised decomposition , 2020, J. Comput. Phys..