Variations and Temperature Dependence of the Excited State Properties of Conformationally and Electronically Perturbed Zinc and Free Base Porphyrins

The photophysical properties and their temperature dependence are reported for the sterically encumbered nonplanar zinc and free base 2,3,5,7,8,10,12,13,15,17,18,20-dodecaphenylporphyrins (ZnDPP and H2DPP), and 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetraphenylporphyrins (ZnOETPP and H2OETPP), and the zinc complex of 5,10,15,20-tetra-tert-butylporphyrin (ZnT(t-Bu)P). Compared to planar 5,10,15,20-tetraphenylporphyrins (ZnTPP and H2TPP), the above compounds exhibit reduced lifetimes of the lowest excited singlet state, reduced fluorescence yields, and large shifts between their absorption and emission maxima at room temperature. ZnT(t-Bu)P, which is known to adopt a ruffled conformation, displays dramatically altered photophysical properties including a 7 ps 1(π,π*) lifetime compared to one of ∼2 ns for ZnTPP at 296 K. Equally noteworthy is the return of the ZnT(t-Bu)P singlet lifetime to a “normal” value of 2.5 ns at 78 K. An analogous temperature dependence has been observed previously for the free bas...