Layer-layout-based heuristics for loading homogeneous items into a single container

The container loading problem (CLP) is a well-known NP-hard problem. Due to the computation complexity, heuristics is an often-sought approach. This article proposes two heuristics to pack homogeneous rectangular boxes into a single container. Both algorithms adopt the concept of building layers on one face of the container, but the first heuristic determines the layer face once for all, while the second treats the remaining container space as a reduced-sized container after one layer is loaded and, hence, selects the layer face dynamically. To handle the layout design problem at a layer’s level, a block-based 2D packing procedure is also developed. Numerical studies demonstrate the efficiency of the heuristics.

[1]  Shigeyuki Takahara,et al.  Loading Problem in Multiple Containers and Pallets Using Strategic Search Method , 2005, MDAI.

[2]  Xiaoping Zhang,et al.  A Heuristic Algorithm for the Container Loading Problem with Heterogeneous Boxes , 2006, 2006 IEEE International Conference on Systems, Man and Cybernetics.

[3]  Hermann Gehring,et al.  A hybrid genetic algorithm for the container loading problem , 2001, Eur. J. Oper. Res..

[4]  Guntram Scheithauer,et al.  The G4-Heuristic for the Pallet Loading Problem , 1996 .

[5]  Zhou-Jing Wang,et al.  A heuristic for the container loading problem: A tertiary-tree-based dynamic space decomposition approach , 2008, Eur. J. Oper. Res..

[6]  Harald Dyckhoff,et al.  A typology of cutting and packing problems , 1990 .

[7]  E. E. Bischoff,et al.  Three-dimensional packing of items with limited load bearing strength , 2006, Eur. J. Oper. Res..

[8]  Rajasooriyar Partheepan Hybrid Genetic Algorithms , 2004 .

[9]  E. E. Bischoff,et al.  Issues in the development of approaches to container loading , 1995 .

[10]  Bryan Kok Ann Ngoi,et al.  Applying spatial representation techniques to the container packing problem , 1994 .

[11]  Daniel Mack,et al.  A parallel tabu search algorithm for solving the container loading problem , 2003, Parallel Comput..

[12]  David Pisinger,et al.  Heuristics for the container loading problem , 2002, Eur. J. Oper. Res..

[13]  Gerald Keller,et al.  Statistics for Management and Economics , 1990 .

[14]  Reinaldo Morabito,et al.  A note on an L-approach for solving the manufacturer's pallet loading problem , 2005, J. Oper. Res. Soc..

[15]  Li Bing A Heuristic Layout Restriction Algorithm for Solving Two-Dimensional Rectangular Layout Loading Problems , 2002 .

[16]  Jan Riehme,et al.  An efficient approach for the multi-pallet loading problem , 2000, Eur. J. Oper. Res..

[17]  A. Moura,et al.  A GRASP approach to the container-loading problem , 2005, IEEE Intelligent Systems.

[18]  Katsuhisa Ohno,et al.  An Efficient Approach for the Three-Dimensional Container Packing Problem with Practical Constraints , 2004, Asia Pac. J. Oper. Res..

[19]  J. A. George,et al.  A heuristic for packing boxes into a container , 1980, Comput. Oper. Res..

[20]  D. Mack,et al.  A parallel hybrid local search algorithm for the container loading problem , 2004 .

[21]  Guntram Scheithauer Algorithms for the Container Loading Problem , 1992 .

[22]  Ramón Alvarez-Valdés,et al.  A tabu search algorithm for the pallet loading problem , 2005, OR Spectr..

[23]  Reinaldo Morabito,et al.  Some experiments with a simple tabu search algorithm for the manufacturer's pallet loading problem , 2006, Comput. Oper. Res..

[24]  P. Cani A Note on the Two-Dimensional Rectangular Cutting-Stock Problem , 1978 .

[25]  Eberhard E. Bischoff,et al.  Weight distribution considerations in container loading , 1999, Eur. J. Oper. Res..