Hierarchical multi-innovation extended stochastic gradient algorithms for input nonlinear multivariable OEMA systems by the key-term separation principle

This paper focuses on the identification of input nonlinear multivariable systems (i.e., Hammerstein multi-input multi-output nonlinear systems) described by output-error moving average models. Based on the key-term separation principle, we separate a proper key term in the nonlinear system and transform a complex nonlinear optimization problem into a pseudo-linear optimization problem which does not involve the products of the parameters between the linear parts and the nonlinear parts. Thus, a hierarchical extended stochastic gradient (H-ESG) algorithm is given and a hierarchical multi-innovation extended stochastic gradient (H-MI-ESG) algorithm is derived for the nonlinear systems. The proposed H-MI-ESG algorithm is an extension of the H-ESG algorithms. Compared with the over-parameterization-based least-squares identification algorithm, the H-ESG and H-MI-ESG algorithms have high computational efficiency. The simulation results show the effectiveness of the proposed algorithms.

[1]  Baolin Liu,et al.  Recursive Extended Least Squares Parameter Estimation for Wiener Nonlinear Systems with Moving Average Noises , 2013, Circuits, Systems, and Signal Processing.

[2]  Han-Fu Chen,et al.  Recursive Identification of Multi-Input Multi-Output Errors-in-Variables Hammerstein Systems , 2015, IEEE Transactions on Automatic Control.

[3]  Feng Ding,et al.  Hierarchical gradient parameter estimation algorithm for Hammerstein nonlinear systems using the key term separation principle , 2014, Appl. Math. Comput..

[4]  Ji Huang,et al.  Robust Tracking Control of Networked Control Systems: Application to a Networked DC Motor , 2013, IEEE Transactions on Industrial Electronics.

[5]  Feng Ding,et al.  Iterative estimation for a non-linear IIR filter with moving average noise by means of the data filtering technique , 2017, IMA J. Math. Control. Inf..

[6]  Kaddour Najim,et al.  Non-linear process modelling based on a Wiener approach , 2001 .

[7]  F. Ding,et al.  Filtering-based iterative identification for multivariable systems , 2016 .

[8]  Mingming Lu,et al.  Improved memetic algorithm for nonlinear identification of a three-dimensional elliptical vibration cutting system , 2014, J. Syst. Control. Eng..

[9]  Feng Ding,et al.  Hierarchical Least Squares Identification for Hammerstein Nonlinear Controlled Autoregressive Systems , 2015, Circuits Syst. Signal Process..

[10]  Feng Ding,et al.  Iterative identification methods for input nonlinear multivariable systems using the key-term separation principle , 2015, J. Frankl. Inst..

[11]  Feng Ding,et al.  Recursive least squares parameter identification algorithms for systems with colored noise using the filtering technique and the auxilary model , 2015, Digit. Signal Process..

[12]  Bo Yu,et al.  Robust mixed H2/H∞ control of networked control systems with random time delays in both forward and backward communication links , 2011, Autom..

[13]  Yang Liu,et al.  Filtering and fault detection for nonlinear systems with polynomial approximation , 2015, Autom..

[14]  M. Rostami,et al.  Numerical solution of Hammerstein integral equations of mixed type using the Sinc-collocation method , 2015, J. Comput. Appl. Math..

[15]  Daniel J. Inman,et al.  Parameter identification and optimization in piezoelectric energy harvesting: analytical relations, asymptotic analyses, and experimental validations , 2011 .

[16]  Ling Xu,et al.  Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration , 2015 .

[17]  Jozef Vörös Modeling and Identification of Nonlinear Cascade and Sandwich Systems with General Backlash , 2014 .

[18]  D. Wang Brief paper: Lleast squares-based recursive and iterative estimation for output error moving average systems using data filtering , 2011 .

[19]  Yuanbiao Hu,et al.  Iterative and recursive least squares estimation algorithms for moving average systems , 2013, Simul. Model. Pract. Theory.

[20]  Johan Schoukens,et al.  Initial estimates for Wiener-Hammerstein models using phase-coupled multisines , 2015, Autom..

[21]  Wei Xing Zheng,et al.  Iterative identification of block-oriented nonlinear systems based on biconvex optimization , 2015, Syst. Control. Lett..

[22]  Feng Ding,et al.  Recursive Least Squares Parameter Estimation for a Class of Output Nonlinear Systems Based on the Model Decomposition , 2016, Circuits Syst. Signal Process..

[23]  Feng Ding,et al.  Identification of Hammerstein nonlinear ARMAX systems , 2005, Autom..

[24]  F. Ding,et al.  Convergence of the recursive identification algorithms for multivariate pseudo‐linear regressive systems , 2016 .

[25]  Yong Zhang,et al.  Unbiased identification of a class of multi-input single-output systems with correlated disturbances using bias compensation methods , 2011, Math. Comput. Model..

[26]  F. Ding,et al.  Iterative estimation methods for Hammerstein controlled autoregressive moving average systems based on the key-term separation principle , 2014 .

[27]  Tao Tang,et al.  Several gradient-based iterative estimation algorithms for a class of nonlinear systems using the filtering technique , 2014 .

[28]  Baolin Liu,et al.  A multi-innovation generalized extended stochastic gradient algorithm for output nonlinear autoregressive moving average systems , 2014, Appl. Math. Comput..

[29]  Feng Ding,et al.  Recursive least squares algorithm and gradient algorithm for Hammerstein–Wiener systems using the data filtering , 2016 .

[30]  F. Ding,et al.  Multi-innovation parameter estimation for Hammerstein MIMO output-error systems based on the key-term separation , 2015 .

[31]  Olivier Gehan,et al.  Identification Scheme for Hammerstein Output Error Models With Bounded Noise , 2016, IEEE Transactions on Automatic Control.

[32]  Er-Wei Bai An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Autom..

[33]  Han-Fu Chen,et al.  Recursive Identification of MIMO Wiener Systems , 2013, IEEE Transactions on Automatic Control.

[34]  Torsten Söderström,et al.  Unbalance estimation using linear and nonlinear regression , 2010, Autom..

[35]  Huiping Li,et al.  Robust H∞ filtering for nonlinear stochastic systems with uncertainties and Markov delays , 2012, Autom..

[36]  Jozef Vörös,et al.  Iterative identification of nonlinear dynamic systems with output backlash using three-block cascade models , 2015 .

[37]  Jie Ding,et al.  Auxiliary model based parameter estimation for dual-rate output error systems with colored noise ☆ , 2013 .

[38]  Ling Xu,et al.  A proportional differential control method for a time-delay system using the Taylor expansion approximation , 2014, Appl. Math. Comput..

[39]  Reza Abrishambaf,et al.  Comparison of wireless sensor network and radio frequency identification for the process control of distributed industrial systems , 2014, J. Syst. Control. Eng..