Thermal Expansion of Aluminum–Fly Ash Cenosphere Composites Synthesized by Pressure Infiltration Technique

The coefficients of thermal expansion (CTEs) of commercially available pure aluminum and aluminum alloy composites containing hollow fly ash particles (cenospheres) of average size 125 mm are measured using a dilatometer. Three types of composites are made using the pressure infiltration technique at applied pressures and infiltration times of 35 kPa for 3 min, 35 kPa for 7 min, and 62 kPa for 7 min. The volume fractions of the fly ash cenospheres in the composites are around 65%. The CTE of the composites is measured to be in the range of 13.1×10-6-11×10-6/°C, which is lower than that of pure aluminum (25.3×10-6/°C). The infiltration processing conditions are found to influence the CTE of the composites. A higher applied pressure and a longer infiltration time lead to a lower CTE. The theoretical value of the CTE of fly ash cenospheres is estimated to be 6.1×10-6/°C.

[1]  V. Michaud,et al.  Thermal expansion of metals reinforced with ceramic particles and microcellular foams , 1996 .

[2]  K. Chawla,et al.  Effect of particle size on the thermal expansion of XD™ composites , 1994 .

[3]  P. Rohatgi,et al.  Differential thermal analysis to establish the stability of aluminum-fly ash composites during synthesis and reheating , 1998 .

[4]  S. Thermal-Expansion Stresses in Reinforced Plastics , 2022 .

[5]  P. Uggowitzer,et al.  Physical properties of graphite/aluminium composites produced by gas pressure infiltration method , 2003 .

[6]  J. Cornie,et al.  On the infiltration of metal matrix composites , 1987 .

[7]  D. Lloyd,et al.  Thermal expansion studies of prestrained Al2O3/Al metal matrix composite , 1996 .

[8]  Chongmu Lee,et al.  The effect of particle size and volume fraction of the reinforced phases on the linear thermal expansion in the Al–Si–SiCp system , 2004 .

[9]  William D. Callister,et al.  Materials Science and Engineering: An Introduction , 1985 .

[10]  Y. B. Liu,et al.  Tribological properties of metal matrix-graphite particle composites , 1992 .

[11]  P. Mensah,et al.  Compression properties of syntactic foams: effect of cenosphere radius ratio and specimen aspect ratio , 2003 .

[12]  Gao-hui Wu,et al.  Property Characteristics of a TiB2P/Al Composite Fabricatedby Squeeze Casting Technology , 2003 .

[13]  P. Rohatgi,et al.  Tribological properties of centrifugally cast copper alloy-graphite particle composite , 2000 .

[14]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[15]  Robert F. Singer,et al.  Fabrication and Properties of Syntactic Magnesium Foams , 1998 .

[16]  J. Mottram,et al.  Manufacture and compression properties of syntactic foams , 1993 .

[17]  S. Yoda,et al.  Fiber/matrix interface porosity formation in tungsten fiber/copper composites on thermal cycling , 1979 .

[18]  梅川 荘吉,et al.  Composites '86 : recent advances in Japan and the United States , 1986 .

[19]  P. Rohatgi,et al.  Crystallinity and selected properties of fly ash particles , 2002 .

[20]  Hydrodynamic analysis of liquid infiltration of unidirectional fibre arrays by squeeze casting , 1994 .

[21]  M. Ashby,et al.  Metal Foams: A Design Guide , 2000 .

[22]  M. Flemings,et al.  Thermal expansion behavior of silver matrix composites , 2000 .

[23]  A. Mortensen,et al.  Thermal expansion responses of pressure infiltrated SiC/Al metal-matrix composites , 1997 .

[24]  Qiang Zhang,et al.  Thermal expansion and dimensional stability of Al–Si matrix composite reinforced with high content SiC , 2003 .

[25]  A. Sundarrajan,et al.  Thermal expansion behavior of particulate metal-matrix composites , 1998 .

[26]  P. Withers,et al.  An introduction to metal matrix composites , 1993 .

[27]  J. Rödel,et al.  Thermal residual strains and stresses in Al2O3/Al composites with interpenetrating networks , 1999 .

[28]  Kishore,et al.  Studies on compressive failure features in syntactic foam material , 2001 .

[29]  Thomas M Truskett,et al.  Is random close packing of spheres well defined? , 2000, Physical review letters.

[30]  David L. McDowell,et al.  Behavior of a random hollow sphere metal foam , 2002 .

[31]  S. Tjong,et al.  Thermal cycling characteristics of in-situ Al-based composites prepared by reactive hot pressing , 2003 .

[32]  P. Rohatgi,et al.  SOLIDIFICATION PROCESSING OF METAL - MATRIX COMPOSITES , 1989 .

[33]  D. Dunand,et al.  Diffraction strain measurements in a partially crystallized bulk metallic glass composite containing ductile particles , 2003 .

[34]  W. Fei,et al.  Thermal expansion behavior and thermal mismatch stress of aluminum matrix composite reinforced by β-eucryptite particle and aluminum borate whisker , 2004 .