Rotational Invariance Based on Fourier Analysis in Polar and Spherical Coordinates

In this paper, polar and spherical Fourier analysis are defined as the decomposition of a function in terms of eigenfunctions of the Laplacian with the eigenfunctions being separable in the corresponding coordinates. The proposed transforms provide effective decompositions of an image into basic patterns with simple radial and angular structures. The theory is compactly presented with an emphasis on the analogy to the normal Fourier transform. The relation between the polar or spherical Fourier transform and the normal Fourier transform is explored. As examples of applications, rotation-invariant descriptors based on polar and spherical Fourier coefficients are tested on pattern classification problems.

[1]  Kostas Daniilidis,et al.  Rotation estimation from spherical images , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[2]  Didier Lemoine,et al.  The discrete Bessel transform algorithm , 1994 .

[3]  O. Ronneberger,et al.  Automated pollen recognition using 3D volume images from fluorescence microscopy , 2002 .

[4]  Whoi-Yul Kim,et al.  Robust Rotation Angle Estimator , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Rob H. Bisseling,et al.  The fast Hankel transform as a tool in the solution of the time dependent Schrödinger equation , 1985 .

[6]  John Strong,et al.  Principles of Optics . Electromagnetic theory of propagation, interference and diffraction of light. Max Born, Emil Wolf et al . Pergamon Press, New York, 1959. xxvi + 803 pp. Illus. $17.50 , 1960 .

[7]  Szymon Rusinkiewicz,et al.  Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors , 2003, Symposium on Geometry Processing.

[8]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[9]  E.M. Arvacheh,et al.  Pattern Analysis Using Zernike Moments , 2005, 2005 IEEE Instrumentationand Measurement Technology Conference Proceedings.

[10]  O. Ronneberger,et al.  Fourier Analysis in Polar and Spherical Coordinates , 2008 .

[11]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[12]  Roberto Marcondes Cesar Junior,et al.  Face recognition based on polar frequency features , 2005, TAP.

[13]  Michael Elad,et al.  Accurate and fast discrete polar Fourier transform , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[14]  Hans Burkhardt,et al.  Voxel-Wise Gray Scale Invariants for Simultaneous Segmentation and Classification , 2005, DAGM-Symposium.

[15]  Tunc Geveci,et al.  Advanced Calculus , 2014, Nature.

[16]  Roland T. Chin,et al.  On image analysis by the methods of moments , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Alireza Khotanzad,et al.  Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Fillia Makedon,et al.  A Novel Surface Registration Algorithm With Biomedical Modeling Applications , 2007, IEEE Transactions on Information Technology in Biomedicine.

[19]  B. Pons,et al.  Ability of monocentric close-coupling expansions to describe ionization in atomic collisions , 2000 .

[20]  R. A. Silverman,et al.  Special functions and their applications , 1966 .

[21]  T. J. Dennis,et al.  3D model representation using spherical harmonics , 1997 .

[22]  Ralph Skomski,et al.  Quasicoherent nucleation mode in two-phase nanomagnets , 1999 .