Simultaneous dendritic voltage and calcium imaging and somatic recording from Purkinje neurons in awake mice

Spatiotemporal maps of dendritic signalling and their relationship with somatic output is fundamental to neuronal information processing, yet remain unexplored in awake animals. Here, we combine simultaneous sub-millisecond voltage and calcium two-photon imaging from distal spiny dendrites, with somatic electrical recording from spontaneously active cerebellar Purkinje neurons (PN) in awake mice. We detect discrete 1−2 ms suprathreshold voltage spikelets in the distal spiny dendrites during dendritic complex spikes. Spikelets and their calcium correlates are highly heterogeneous in number, timing and spatial distribution within and between complex spikes. Back-propagating simple spikes are highly attenuated. Highly variable 5–10 ms voltage hotspots are localized to fine dendritic processes and are reduced in size and frequency by lidocaine and CNQX. Hotspots correlated with somatic output but also, at high frequency, trigger purely dendritic calcium spikes. Summarizing, spatiotemporal signalling in PNs is far more complex, dynamic, and fine scaled than anticipated, even in resting animals.Dendritic integration is important for information processing in the brain. Here, in awake mice, authors combine simultaneous dendritic recording of voltage and calcium signals, with somatic recording from Purkinje neurons, enabling characterization of dendritic spiking, action potential backpropagation, and ‘hotspots’ in spiny dendrites.

[1]  Spencer L. Smith,et al.  Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo , 2013, Nature.

[2]  Bernd Kuhn,et al.  Chronic cranial window with access port for repeated cellular manipulations, drug application, and electrophysiology , 2014, Front. Cell. Neurosci..

[3]  D. Armstrong,et al.  Activity patterns of cerebellar cortical neurones and climbing fibre afferents in the awake cat. , 1979, The Journal of physiology.

[4]  E. De Schutter,et al.  Patterns and pauses in Purkinje cell simple spike trains: experiments, modeling and theory , 2009, Neuroscience.

[5]  Prof. Dr. Sanford L. Palay,et al.  Cerebellar Cortex , 1974, Springer Berlin Heidelberg.

[6]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[7]  Karel Svoboda,et al.  ScanImage: Flexible software for operating laser scanning microscopes , 2003, Biomedical engineering online.

[8]  Jeremy Fairbank,et al.  Historical Perspective , 1987, Do We Really Understand Quantum Mechanics?.

[9]  Michael Häusser,et al.  Dendritic spikes mediate negative synaptic gain control in cerebellar Purkinje cells , 2010, Proceedings of the National Academy of Sciences.

[10]  W. N. Ross,et al.  Calcium transients evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig cerebellar Purkinje neurons. , 1992, Journal of neurophysiology.

[11]  J. Bower,et al.  An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses. , 1994, Journal of neurophysiology.

[12]  R. Llinás,et al.  Real-time imaging of calcium influx in mammalian cerebellar Purkinje cells in vitro. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[13]  A. Konnerth,et al.  Intradendritic release of calcium induced by glutamate in cerebellar purkinje cells , 1991, Neuron.

[14]  P. De Koninck,et al.  Optophysiological Approach to Resolve Neuronal Action Potentials with High Spatial and Temporal Resolution in Cultured Neurons , 2011, Front. Cell. Neurosci..

[15]  A. Konnerth,et al.  Subthreshold synaptic Ca2+ signalling in fine dendrites and spines of cerebellar Purkinje neurons , 1995, Nature.

[16]  George J. Augustine,et al.  Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites , 1998, Nature.

[17]  K. Svoboda,et al.  Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window , 2009, Nature Protocols.

[18]  W. N. Ross,et al.  Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes. , 2010, Journal of neurophysiology.

[19]  C. Hansel,et al.  Climbing fiber-triggered metabotropic slow potentials enhance dendritic calcium transients and simple spike firing in cerebellar Purkinje cells , 2007, Molecular and Cellular Neuroscience.

[20]  J. Eccles,et al.  The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum , 1966, The Journal of physiology.

[21]  Rodolfo R. Llinás,et al.  Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective , 2014, Front. Cell. Neurosci..

[22]  M. Meyer,et al.  Alterations in Purkinje cell spines of calbindin D‐28 k and parvalbumin knock‐out mice , 2000, The European journal of neuroscience.

[23]  P. Strata,et al.  Characterization of the mGluR(1)-mediated electrical and calcium signaling in Purkinje cells of mouse cerebellar slices. , 2001, Journal of neurophysiology.

[24]  R. Nicoll,et al.  Excitatory synaptic currents in Purkinje cells , 1990, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[25]  A. Konnerth,et al.  Synaptic currents in cerebellar Purkinje cells. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[26]  A. Marty,et al.  Calcium-induced calcium release in cerebellar purkinje cells , 1994, Neuron.

[27]  M. Häusser,et al.  The Origin of the Complex Spike in Cerebellar Purkinje Cells , 2008, The Journal of Neuroscience.

[28]  M. Häusser,et al.  Reading out a spatiotemporal population code by imaging neighbouring parallel fibre axons in vivo , 2015, Nature Communications.

[29]  B. Barbour Synaptic currents evoked in purkinje cells by stimulating individual granule cells , 1993, Neuron.

[30]  S. Palay,et al.  Cerebellar Cortex: Cytology and Organization , 1974 .

[31]  N. Spruston,et al.  Diversity and dynamics of dendritic signaling. , 2000, Science.

[32]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. , 1980, The Journal of physiology.

[33]  I Segev,et al.  Untangling dendrites with quantitative models. , 2000, Science.

[34]  D. Tank,et al.  Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. , 1988, Science.

[35]  Michael Häusser,et al.  Dendritic Calcium Signaling Triggered by Spontaneous and Sensory-Evoked Climbing Fiber Input to Cerebellar Purkinje Cells In Vivo , 2011, The Journal of Neuroscience.

[36]  Bernd Kuhn,et al.  Anellated hemicyanine dyes in a neuron membrane: Molecular Stark effect and optical voltage recording , 2003 .

[37]  Diana Deca,et al.  LOTOS-based two-photon calcium imaging of dendritic spines in vivo , 2012, Nature Protocols.

[38]  Farzaneh Najafi,et al.  Coding of stimulus strength via analog calcium signals in Purkinje cell dendrites of awake mice , 2014, eLife.

[39]  Javier F. Medina,et al.  Beyond “all-or-nothing” climbing fibers: graded representation of teaching signals in Purkinje cells , 2013, Front. Neural Circuits.

[40]  R. Llinás,et al.  Tetrodotoxin-resistant dendritic spikes in avian Purkinje cells. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[41]  R. Angus Silver,et al.  Cerebellar LTD and Pattern Recognition by Purkinje Cells , 2007, Neuron.

[42]  S. Wang,et al.  Coincidence detection in single dendritic spines mediated by calcium release , 2000, Nature Neuroscience.

[43]  S. Koekkoek,et al.  Spatiotemporal firing patterns in the cerebellum , 2011, Nature Reviews Neuroscience.

[44]  W. N. Ross,et al.  IPSPs strongly inhibit climbing fiber-activated [Ca2+]i increases in the dendrites of cerebellar Purkinje neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  M. Häusser,et al.  Propagation of action potentials in dendrites depends on dendritic morphology. , 2001, Journal of neurophysiology.

[46]  Benjamin Mathieu,et al.  Activity-Dependent Gating of Calcium Spikes by A-type K+ Channels Controls Climbing Fiber Signaling in Purkinje Cell Dendrites , 2014, Neuron.

[47]  M. Häusser,et al.  Integration of quanta in cerebellar granule cells during sensory processing , 2004, Nature.

[48]  Mayank R Mehta,et al.  Dynamics of cortical dendritic membrane potential and spikes in freely behaving rats , 2016, Science.

[49]  Nelson Spruston,et al.  Dendritic integration: 60 years of progress , 2015, Nature Neuroscience.

[50]  W. Denk,et al.  In vivo two-photon voltage-sensitive dye imaging reveals top-down control of cortical layers 1 and 2 during wakefulness , 2008, Proceedings of the National Academy of Sciences.

[51]  Bernd Kuhn,et al.  Dendritic diameters affect the spatial variability of intracellular calcium dynamics in computer models , 2014, Front. Cell. Neurosci..

[52]  Bernd Kuhn,et al.  High sensitivity of Stark-shift voltage-sensing dyes by one- or two-photon excitation near the red spectral edge. , 2004, Biophysical journal.

[53]  M. Martina,et al.  Properties and Functional Role of Voltage-Dependent Potassium Channels in Dendrites of Rat Cerebellar Purkinje Neurons , 2003, The Journal of Neuroscience.

[54]  E. De Schutter,et al.  Stochastic Calcium Mechanisms Cause Dendritic Calcium Spike Variability , 2013, The Journal of Neuroscience.

[55]  M. Häusser,et al.  Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch‐clamp recordings , 2001, The Journal of physiology.

[56]  Weijian Yang,et al.  In vivo imaging of neural activity , 2017, Nature Methods.

[57]  R Llinás,et al.  Reversal properties of climbing fiber potential in cat Purkinje cells: an example of a distributed synapse. , 1976, Journal of neurophysiology.

[58]  W. Denk,et al.  Two types of calcium response limited to single spines in cerebellar Purkinje cells. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[59]  J. Bower,et al.  Simulated responses of cerebellar Purkinje cells are independent of the dendritic location of granule cell synaptic inputs. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Amanda J. Foust,et al.  Action Potentials Initiate in the Axon Initial Segment and Propagate through Axon Collaterals Reliably in Cerebellar Purkinje Neurons , 2010, The Journal of Neuroscience.

[61]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[62]  M. Häusser,et al.  Initiation and spread of sodium action potentials in cerebellar purkinje cells , 1994, Neuron.

[63]  Rodolfo Llinás,et al.  P-type calcium channels in the somata and dendrites of adult cerebellar purkinje cells , 1992, Neuron.

[64]  Arnd Roth,et al.  Initiation of simple and complex spikes in cerebellar Purkinje cells , 2010, The Journal of physiology.

[65]  P. Fromherz,et al.  ANNINE-6plus, a voltage-sensitive dye with good solubility, strong membrane binding and high sensitivity , 2007, European Biophysics Journal.

[66]  O. Garaschuk,et al.  Fractional calcium current through neuronal AMPA-receptor channels with a low calcium permeability , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.