Recent developments in error estimates for scattered-data interpolation via radial basis functions

Abstract Error estimates for scattered data interpolation by “shifts” of a positive definite function for target functions in the associated reproducing kernel Hilbert space (RKHS) have been known for a long time. However, apart from special cases where data is gridded, these interpolation estimates do not apply when the target functions generating the data are outside of the associated RKHS, and in fact until very recently no estimates were known in such situations. In this paper, we review these estimates in cases where the underlying space is Rn and the positive definite functions are radial basis functions (RBFs).

[1]  F. J. Narcowich,et al.  Approximation with interpolatory constraints , 2001 .

[2]  Holger Wendland,et al.  Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting , 2004, Math. Comput..

[3]  R. DeVore,et al.  Approximation from Shift-Invariant Subspaces of L 2 (ℝ d ) , 1994 .

[4]  Zongmin Wu,et al.  Local error estimates for radial basis function interpolation of scattered data , 1993 .

[5]  Joseph D. Ward,et al.  Scattered-Data Interpolation on Rn: Error Estimates for Radial Basis and Band-Limited Functions , 2004, SIAM J. Math. Anal..

[6]  Robert Schaback,et al.  Improved error bounds for scattered data interpolation by radial basis functions , 1999, Math. Comput..

[7]  Jungho Yoon,et al.  Spectral Approximation Orders of Radial Basis Function Interpolation on the Sobolev Space , 2001, SIAM J. Math. Anal..

[8]  Holger Wendland,et al.  Meshless Galerkin methods using radial basis functions , 1999, Math. Comput..

[9]  P. Erdös On Some Convergence Properties of the Interpolation Polynomials , 1943 .

[10]  G. Weiss,et al.  Littlewood-Paley Theory and the Study of Function Spaces , 1991 .

[11]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[12]  J. Duchon Sur l’erreur d’interpolation des fonctions de plusieurs variables par les $D^m$-splines , 1978 .

[13]  Robert Schaback,et al.  Approximation by radial basis functions with finitely many centers , 1996 .

[14]  Joseph D. Ward,et al.  Scattered Data Interpolation on Spheres: Error Estimates and Locally Supported Basis Functions , 2002, SIAM J. Math. Anal..

[15]  Jean Duchon,et al.  Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.

[16]  Holger Wendland,et al.  Error Estimates for Interpolation by Compactly Supported Radial Basis Functions of Minimal Degree , 1998 .

[17]  R. A. Brownlee,et al.  Approximation orders for interpolation by surface splines to rough functions , 2004, 0705.4281.

[18]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[19]  R. DeVore,et al.  Approximation from shift-invariant subspaces of ₂(^{}) , 1994 .

[20]  M. Buhmann Multivariate cardinal interpolation with radial-basis functions , 1990 .

[21]  M. Buhmann New Developments in the Theory of Radial Basis Function Interpolation , 1993 .

[22]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[23]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[24]  W. Madych,et al.  Multivariate interpolation and condi-tionally positive definite functions , 1988 .