Piezo‐Phototronic UV/Visible Photosensing with Optical‐Fiber–Nanowire Hybridized Structures

An optical-fiber-nanowire hybridized UV-visible photodetector (PD) is reported. The PD is designed to allow direct integration in optical communication systems without requiring the use of couplers via fiber-welding technology. The PD works in two modes: axial and off-axial illumination mode. By using the piezo-phototronic effect, the performance of the PD is enhanced/optimized by up to 718% in sensitivity and 2067% in photoresponsivity.

[1]  M Lida,et al.  Holographic Fourier diffraction gratings with a high diffraction efficiency optimized for optical communication systems. , 1992, Applied optics.

[2]  John Gowar,et al.  Optical communication systems (2nd ed.) , 1993 .

[3]  Kenneth T. V. Grattan,et al.  Fiber optic sensor technology: an overview , 2000 .

[4]  Yong Xu,et al.  The absolute energy positions of conduction and valence bands of selected semiconducting minerals , 2000 .

[5]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[6]  J. Fujimoto,et al.  Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. , 2001, Optics letters.

[7]  E. Monroy,et al.  Wide-bandgap semiconductor ultraviolet photodetectors , 2003 .

[8]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[9]  G. Konstantatos,et al.  Ultrasensitive solution-cast quantum dot photodetectors , 2006, Nature.

[10]  Sheng-Po Chang,et al.  Ultraviolet photodetectors with ZnO nanowires prepared on ZnO:Ga/glass templates , 2006 .

[11]  C. Soci,et al.  ZnO nanowire UV photodetectors with high internal gain. , 2007, Nano letters.

[12]  E. Sargent Solar Cells, Photodetectors, and Optical Sources from Infrared Colloidal Quantum Dots , 2008 .

[13]  Zhong Lin Wang,et al.  Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. , 2009, Applied physics letters.

[14]  C. Liu,et al.  Fabrication and characterization of ZnO film based UV photodetector , 2009 .

[15]  Zhong Lin Wang,et al.  Power generation with laterally packaged piezoelectric fine wires. , 2009, Nature nanotechnology.

[16]  Chun Xing Li,et al.  Solution synthesis of large-scale, high-sensitivity ZnO/Si hierarchical nanoheterostructure photodetectors. , 2010, Journal of the American Chemical Society.

[17]  Galileo Sarasqueta,et al.  Effect of Solvent Treatment on Solution-Processed Colloidal PbSe Nanocrystal Infrared Photodetectors , 2010 .

[18]  H. Yadav,et al.  Persistent photoconductivity due to trapping of induced charges in Sn/ZnO thin film based UV photodetector , 2010 .

[19]  G. Konstantatos,et al.  Nanostructured materials for photon detection. , 2010, Nature nanotechnology.

[20]  Zhong Lin Wang,et al.  Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect. , 2010, ACS nano.

[21]  N. Marzari,et al.  Ultraviolet Photodetectors Based on Anodic TiO2 Nanotube Arrays , 2010 .

[22]  Zhong Lin Wang,et al.  Self-powered system with wireless data transmission. , 2011, Nano letters.

[23]  Hao Yan,et al.  Programmable nanowire circuits for nanoprocessors , 2011, Nature.

[24]  Nuanyang Cui,et al.  High‐Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates , 2011 .

[25]  Galileo Sarasqueta,et al.  Organic and Inorganic Blocking Layers for Solution‐Processed Colloidal PbSe Nanocrystal Infrared Photodetectors , 2011 .

[26]  Jr-hau He,et al.  Photocarrier Relaxation Behavior of a Single ZnO Nanowire UV Photodetector: Effect of Surface Band Bending , 2012, IEEE Electron Device Letters.

[27]  S. Mondal,et al.  High Efficiency Si/CdS Radial Nanowire Heterojunction Photodetectors Using Etched Si Nanowire Templates , 2012 .

[28]  Yu-Lun Chueh,et al.  Supersensitive, ultrafast, and broad-band light-harvesting scheme employing carbon nanotube/TiO2 core-shell nanowire geometry. , 2012, ACS nano.

[29]  Seunghun Hong,et al.  Aligned networks of cadmium sulfide nanowires for highly flexible photodetectors with improved photoconductive responses , 2012 .

[30]  Caofeng Pan,et al.  Piezotronic Effect on the Transport Properties of GaN Nanobelts for Active Flexible Electronics , 2012, Advanced materials.

[31]  Zhong‐Lin Wang,et al.  Progress in Piezotronics and Piezo‐Phototronics , 2012, Advanced materials.

[32]  D. Shen,et al.  Self-powered spectrum-selective photodetectors fabricated from n-ZnO/p-NiO core–shell nanowire arrays , 2013 .

[33]  Zhong Lin Wang,et al.  Piezo-phototronic effect enhanced visible/UV photodetector of a carbon-fiber/ZnO-CdS double-shell microwire. , 2013, ACS nano.

[34]  Zhong Lin Wang,et al.  Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect. , 2013, Nano letters.

[35]  Wei-Cheng Lien,et al.  Solar-Blind Photodetectors for Harsh Electronics , 2013, Scientific Reports.

[36]  Zhong Lin Wang,et al.  Taxel-Addressable Matrix of Vertical-Nanowire Piezotronic Transistors for Active and Adaptive Tactile Imaging , 2013, Science.

[37]  Zhong Lin Wang,et al.  High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array , 2013, Nature Photonics.

[38]  Marco Sampietro,et al.  Integration of an Organic Photodetector onto a Plastic Optical Fiber by Means of Spray Coating Technique , 2013, Advanced materials.

[39]  Michael R. S. Huang,et al.  Concurrent Improvement in Photogain and Speed of a Metal Oxide Nanowire Photodetector through Enhancing Surface Band Bending via Incorporating a Nanoscale Heterojunction , 2014 .

[40]  Zhiyong Fan,et al.  All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity , 2014, Nature Communications.