Multitemperature synchrotron powder diffraction and thermoelectric properties of the skutterudite La0.1Co4Sb12

Compounds with the skutterudite structure have potential use in thermoelectric power generation and the role of the filler atoms in filled skutterudites is still an open question regarding their effects on thermal conductivity. Partially filled skutterudite La0.1Co4Sb12 has been investigated by synchrotron powder x-ray diffraction between 90 and 700 K, as well as heat capacity, electrical and thermal transport property measurements, and Hall effect measurements. Anomalously large atomic displacement parameters (ADPs) are found for the La filler atoms, indicating that the La atoms are weakly bound in the structure. Analysis of the multitemperature ADPs of La using the Einstein model and the ADPs of the framework atoms using the Debye model gives an Einstein temperature of 79 K and a Debye temperature of 268 K. The heat capacity estimated from the Debye and Einstein temperatures is in good agreement with the measured experimental data. The ADP analysis also indicates that the La atoms are slightly displaced...

[1]  Xianfan Xu,et al.  Resonant oscillation of misch-metal atoms in filled skutterudites. , 2009, Physical review letters.

[2]  M. Christensen,et al.  Clathrate guest atoms under pressure , 2009 .

[3]  Hannu Mutka,et al.  Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. , 2008, Nature materials.

[4]  C. Uher,et al.  Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites , 2008 .

[5]  M. Christensen,et al.  Host structure engineering in thermoelectric clathrates , 2007 .

[6]  M. Sakata,et al.  X-ray charge density study of chemical bonding in skutterudite CoSb{sub 3} , 2007 .

[7]  Jacob Overgaard,et al.  Crystal structures of thermoelectric n- and p-type Ba8Ga16Ge30 studied by single crystal, multitemperature, neutron diffraction, conventional X-ray diffraction and resonant synchrotron X-ray diffraction. , 2006, Journal of the American Chemical Society.

[8]  B. Sales,et al.  Skutterudites: Their structural response to filling , 2006 .

[9]  F. Grandjean,et al.  Einstein oscillators that impede thermal transport , 2005 .

[10]  C. Bridges,et al.  Thermoelectric power, Hall effect, and mobility of n -type BaTiO 3 , 2003 .

[11]  D. Rowe,et al.  Effect of partial void filling on the transport properties of NdxCo4Sb12 skutterudites , 2003 .

[12]  George S. Nolas,et al.  High figure of merit in partially filled ytterbium skutterudite materials , 2000 .

[13]  Burgi,et al.  Dynamics of molecules in crystals from multi-temperature anisotropic displacement parameters. I. theory , 2000, Acta crystallographica. Section A, Foundations of crystallography.

[14]  B. Sales,et al.  Thermoelectric properties of thallium-filled skutterudites , 2000 .

[15]  B. Sales,et al.  Atomic Displacement Parameters and the Lattice Thermal Conductivity of Clathrate-like Thermoelectric Compounds , 1999 .

[16]  E. J. Freeman,et al.  Localized vibrational modes in metallic solids , 1998, Nature.

[17]  George S. Nolas,et al.  Effect of partial void filling on the lattice thermal conductivity of skutterudites , 1998 .

[18]  B. Sales,et al.  FILLED SKUTTERUDITE ANTIMONIDES : ELECTRON CRYSTALS AND PHONON GLASSES , 1997 .

[19]  C. Uher,et al.  CERIUM FILLING AND DOPING OF COBALT TRIANTIMONIDE , 1997 .

[20]  Jean-Pierre Fleurial,et al.  Properties of single crystalline semiconducting CoSb3 , 1996 .

[21]  O. Maldonado,et al.  Pulse method for simultaneous measurement of electric thermopower and heat conductivity at low temperatures , 1992 .