Phase-heterojunction all-inorganic perovskite solar cells surpassing 21.5% efficiency

[1]  Jinsong Huang,et al.  Suppressed phase segregation for triple-junction perovskite solar cells , 2023, Nature.

[2]  T. Shin,et al.  Controlled growth of perovskite layers with volatile alkylammonium chlorides , 2023, Nature.

[3]  Yana Vaynzof,et al.  Perovskite phase heterojunction solar cells , 2022, Nature Energy.

[4]  Muhammad A. Alam,et al.  Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells , 2022, Science.

[5]  F. Gao,et al.  Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells , 2022, Science.

[6]  S. Mali,et al.  Terbium‐Doped and Dual‐Passivated γ‐CsPb(I1−xBrx)3 Inorganic Perovskite Solar Cells with Improved Air Thermal Stability and High Efficiency , 2022, Advanced materials.

[7]  S. Mali,et al.  Intrinsic and extrinsic stability of triple-cation perovskite solar cells through synergistic influence of organic additive , 2022, Cell Reports Physical Science.

[8]  G. Cui,et al.  Highly efficient CsPbI3/Cs1-xDMAxPbI3 bulk heterojunction perovskite solar cell , 2022, Joule.

[9]  S. Mali,et al.  Ambient processed and stable all-inorganic lead halide perovskite solar cells with efficiencies nearing 20% using a spray coated Zn1−xCsxO electron transport layer , 2021, Nano Energy.

[10]  K. Leo,et al.  Efficient Thermally Evaporated γ‐CsPbI3 Perovskite Solar Cells , 2021, Advanced Energy Materials.

[11]  Jinsong Hu,et al.  Electrical Loss Management by Molecularly Manipulating Dopant-free Poly(3-hexylthiophene) towards 16.93% CsPbI2Br Solar Cells. , 2021, Angewandte Chemie.

[12]  Kang L. Wang,et al.  In‐Situ Hot Oxygen Cleansing and Passivation for All‐Inorganic Perovskite Solar Cells Deposited in Ambient to Breakthrough 19% Efficiency , 2021, Advanced Functional Materials.

[13]  Jianhua Xu,et al.  Direct Observation on p- to n-Type Transformation of Perovskite Surface Region during Defect Passivation Driving High Photovoltaic Efficiency , 2021 .

[14]  S. Mali,et al.  Fully Air-Processed Dynamic Hot-Air-Assisted M:CsPbI2Br (M: Eu2+, In3+) for Stable Inorganic Perovskite Solar Cells , 2021, Matter.

[15]  S. Mali,et al.  Implementing Dopant-Free Hole-Transporting Layers and Metal-Incorporated CsPbI2Br for Stable All-Inorganic Perovskite Solar Cells , 2021, ACS energy letters.

[16]  B. Rech,et al.  Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction , 2020, Science.

[17]  S. Seok,et al.  Surface Engineering of Ambient-Air-Processed Cesium Lead Triiodide Layers for Efficient Solar Cells , 2020 .

[18]  D. Cahen,et al.  Minimum doping densities for p–n junctions , 2020, Nature Energy.

[19]  S. Mali,et al.  Enhanced fill factor for normal n‐i‐p planar heterojunction and mesoscopic perovskite solar cells using ruthenium‐doped TiO2 electron transporting layer , 2020, Progress in Photovoltaics: Research and Applications.

[20]  T. Luo,et al.  Printable CsPbI3 Perovskite Solar Cells with PCE of 19% via an Additive Strategy , 2020, Advanced materials.

[21]  Yongli Gao,et al.  Interfacial Molecular Doping of Metal Halide Perovskites for Highly Efficient Solar Cells , 2020, Advanced materials.

[22]  Zhike Liu,et al.  Controlled n‐Doping in Air‐Stable CsPbI2Br Perovskite Solar Cells with a Record Efficiency of 16.79% , 2020, Advanced Functional Materials.

[23]  S. Mali,et al.  Simultaneous Improved Performance and Thermal Stability of Planar Metal Ion Incorporated CsPbI2Br All‐Inorganic Perovskite Solar Cells Based on MgZnO Nanocrystalline Electron Transporting Layer , 2019, Advanced Energy Materials.

[24]  Xiaomin Liu,et al.  The Role of Dimethylammonium Iodine in CsPbI3 Perovskite Fabrication: Additive or Dopant? , 2019, Angewandte Chemie.

[25]  Y. Qi,et al.  Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies >18% , 2019, Science.

[26]  S. Mali,et al.  Hot-air assisted fully air-processed barium incorporated CsPbI2Br perovskite thin films for highly efficient and stable all-inorganic perovskite solar cells. , 2019, Nano letters.

[27]  Anirban Dutta,et al.  Limiting Heterovalent B-Site Doping in CsPbI3 Nanocrystals: Phase and Optical Stability , 2019, ACS Energy Letters.

[28]  Alexandra F. Paterson,et al.  Addition of the Lewis Acid Zn(C6F5)2 Enables Organic Transistors with a Maximum Hole Mobility in Excess of 20 cm2 V−1 s−1 , 2019, Advanced materials.

[29]  Jun Ji,et al.  Planar p–n homojunction perovskite solar cells with efficiency exceeding 21.3% , 2019, Nature Energy.

[30]  Jianbin Xu,et al.  Ag-Doped Halide Perovskite Nanocrystals for Tunable Band Structure and Efficient Charge Transport , 2019, ACS Energy Letters.

[31]  J. Poortmans,et al.  Minimizing Voltage Loss in Wide-Bandgap Perovskites for Tandem Solar Cells , 2018, ACS Energy Letters.

[32]  Dong Yang,et al.  High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2 , 2018, Nature Communications.

[33]  F. Giustino,et al.  Cubic or Orthorhombic? Revealing the Crystal Structure of Metastable Black-Phase CsPbI3 by Theory and Experiment , 2018, ACS Energy Letters.

[34]  M. Kanatzidis,et al.  Anharmonicity and Disorder in the Black Phases of Cesium Lead Iodide Used for Stable Inorganic Perovskite Solar Cells. , 2018, ACS nano.

[35]  E. Diau,et al.  Ag Doping of Organometal Lead Halide Perovskites: Morphology Modification and p-Type Character , 2017 .

[36]  Meicheng Li,et al.  Highly Efficient Electron‐Selective Layer Free Perovskite Solar Cells by Constructing Effective p–n Heterojunction , 2017 .

[37]  Jizheng Wang,et al.  Detecting trap states in planar PbS colloidal quantum dot solar cells , 2016, Scientific Reports.

[38]  Liyuan Han,et al.  n-Type Doping and Energy States Tuning in CH3NH3Pb1–xSb2x/3I3 Perovskite Solar Cells , 2016 .

[39]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[40]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[41]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[42]  Jinsong Hu,et al.  A sulfur-rich small molecule as a bifunctional interfacial layer for stable perovskite solar cells with efficiencies exceeding 22% , 2021 .