Search efficiency of discrete fractional Brownian motion in a random distribution of targets

Efficiency of search for randomly distributed targets is a prominent problem in many branches of the sciences. For the stochastic process of Levy walks, a specific range of optimal efficiencies was suggested under variation of search intrinsic and extrinsic environmental parameters. In this article, we study fractional Brownian motion as a search process, which under parameter variation generates all three basic types of diffusion, from sub- to normal to superdiffusion. In contrast to Levy walks, fractional Brownian motion defines a Gaussian stochastic process with power law memory yielding anti-persistent, respectively persistent motion. Computer simulations of this search process in a uniformly random distribution of targets show that maximising search efficiencies sensitively depends on the definition of efficiency, the variation of both intrinsic and extrinsic parameters, the perception of targets, the type of targets, whether to detect only one or many of them, and the choice of boundary conditions. We find that different search scenarios favour different modes of motion for optimising search success, defying a universality across all search situations. Some of our results are explained by a simple analytical model. Having demonstrated that search by fractional Brownian motion is a truly complex process, we propose an over-arching conceptual framework based on classifying different search scenarios. This approach incorporates search optimisation by Levy walks as a special case.

[1]  L. Sanders,et al.  First passage times for a tracer particle in single file diffusion and fractional Brownian motion. , 2012, The Journal of chemical physics.

[2]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[3]  M. Srinivasan Search for Research , 2014, Journal of conservative dentistry : JCD.

[4]  G. Rangarajan,et al.  Processes with Long-Range Correlations , 2003 .

[5]  Ilkka Norros,et al.  Simulation of fractional Brownian motion with conditionalized random midpoint displacement , 1999 .

[6]  W. Ebeling,et al.  Active Brownian particles , 2012, The European Physical Journal Special Topics.

[7]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[8]  runden Tisch,et al.  AM , 2020, Catalysis from A to Z.

[9]  Jaegon Um,et al.  Langevin Dynamics Driven by a Telegraphic Active Noise , 2019, Front. Phys..

[10]  64 , 2018, The Devil's Fork.

[11]  Aleksei V. Chechkin,et al.  Lévy flights do not always optimize random blind search for sparse targets , 2014, Proceedings of the National Academy of Sciences.

[12]  A. Chechkin,et al.  Space-fractional Fokker–Planck equation and optimization of random search processes in the presence of an external bias , 2014, 1402.2772.

[13]  이선옥 10 , 1999, Magical Realism for Non-Believers.

[14]  Germinal Cocho,et al.  Scale-free foraging by primates emerges from their interaction with a complex environment , 2006, Proceedings of the Royal Society B: Biological Sciences.

[15]  H. H. Wensink,et al.  How to capture active particles. , 2012, Physical review letters.

[16]  Giuseppe Oriolo,et al.  Random Walks in Swarm Robotics: An Experiment with Kilobots , 2016, ANTS Conference.

[17]  Frederic Bartumeus,et al.  Fractal reorientation clocks: Linking animal behavior to statistical patterns of search , 2008, Proceedings of the National Academy of Sciences.

[18]  Ernesto Estrada Analyzing the impact of SARS CoV-2 on the human proteome , 2020, bioRxiv.

[19]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[20]  Lars Chittka,et al.  Spatiotemporal dynamics of bumblebees foraging under predation risk. , 2011, Physical review letters.

[21]  Frederic Bartumeus,et al.  Foraging success under uncertainty: search tradeoffs and optimal space use. , 2016, Ecology letters.

[22]  W. J. O'brien,et al.  Search Strategies of Foraging Animals , 2016 .

[23]  H. Stanley,et al.  Optimizing the success of random searches , 1999, Nature.

[24]  M. Weiss Single-particle tracking data reveal anticorrelated fractional Brownian motion in crowded fluids. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  I. Goychuk Viscoelastic Subdiffusion: Generalized Langevin Equation Approach , 2012 .

[26]  H. Hatzikirou,et al.  Cellular automaton models for time-correlated random walks: derivation and analysis , 2017, Scientific Reports.

[27]  H. Stark,et al.  Active Brownian particles moving in a random Lorentz gas , 2016, The European physical journal. E, Soft matter.

[28]  F. Marlowe,et al.  Evidence of Lévy walk foraging patterns in human hunter–gatherers , 2013, Proceedings of the National Academy of Sciences.

[29]  Rainer Klages,et al.  First passage and first hitting times of Lévy flights and Lévy walks , 2019, New Journal of Physics.

[30]  G. Molchan Maximum of a Fractional Brownian Motion: Probabilities of Small Values , 1999 .

[31]  R. Klages Search for Food of Birds, Fish and Insects , 2018 .

[32]  Temple,et al.  PP , 2018, Catalysis from A to Z.

[33]  Shmuel Gal,et al.  The theory of search games and rendezvous , 2002, International series in operations research and management science.

[34]  K. Wiese First passage in an interval for fractional Brownian motion. , 2018, Physical review. E.

[35]  Marcos C. Santos,et al.  Dynamical robustness of Lévy search strategies. , 2003, Physical review letters.

[36]  Astronomy,et al.  Search reliability and search efficiency of combined Lévy–Brownian motion: long relocations mingled with thorough local exploration , 2016, 1609.03822.

[37]  Igor M. Sokolov,et al.  Models of anomalous diffusion in crowded environments , 2012 .

[38]  A. M. Edwards,et al.  Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer , 2007, Nature.

[39]  Frederic Bartumeus,et al.  Stochastic Optimal Foraging: Tuning Intensive and Extensive Dynamics in Random Searches , 2014, PloS one.

[40]  Gerhard Gompper,et al.  Run-and-tumble dynamics of self-propelled particles in confinement , 2015, 1503.06454.

[42]  Nicolas E. Humphries,et al.  Scaling laws of marine predator search behaviour , 2008, Nature.

[43]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[44]  J. Klafter,et al.  First Steps in Random Walks: From Tools to Applications , 2011 .

[45]  L. Stone Theory of Optimal Search , 1975 .

[46]  Frederic Bartumeus,et al.  ANIMAL SEARCH STRATEGIES: A QUANTITATIVE RANDOM‐WALK ANALYSIS , 2005 .

[47]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[48]  Darrell Velegol,et al.  Boundaries can steer active Janus spheres , 2015, Nature Communications.

[49]  A. Reynolds Current status and future directions of Lévy walk research , 2018, Biology Open.

[50]  Alex James,et al.  Efficient or Inaccurate? Analytical and Numerical Modelling of Random Search Strategies , 2010, Bulletin of mathematical biology.

[51]  M. Chupeau,et al.  Cover times of random searches , 2015, Nature Physics.

[52]  E. Barkai,et al.  Superdiffusive Dispersals Impart the Geometry of Underlying Random Walks. , 2016, Physical review letters.

[53]  A Fuliński,et al.  Fractional Brownian motions: memory, diffusion velocity, and correlation functions , 2017 .

[54]  O. Pohl,et al.  Active Brownian particles and run-and-tumble particles separate inside a maze , 2016, Scientific Reports.

[55]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.

[56]  Daniel Campos,et al.  Stochastic Foundations in Movement Ecology , 2014 .

[57]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[58]  Ralf Metzler,et al.  Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  M. Moreau,et al.  Intermittent search strategies , 2011, 1104.0639.

[60]  M. Weiss,et al.  Elucidating the origin of anomalous diffusion in crowded fluids. , 2009, Physical review letters.

[61]  Gernot Guigas,et al.  Sampling the cell with anomalous diffusion - the discovery of slowness. , 2008, Biophysical journal.

[62]  R. Metzler,et al.  In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. , 2010, Physical review letters.

[63]  John Waldron,et al.  The Langevin Equation , 2004 .

[64]  A. M. Edwards,et al.  Assessing Lévy walks as models of animal foraging , 2011, Journal of The Royal Society Interface.

[65]  O. Bénichou,et al.  Universality Classes of Hitting Probabilities of Jump Processes. , 2021, Physical review letters.

[66]  Sidney Redner,et al.  A guide to first-passage processes , 2001 .

[67]  F. Weissing,et al.  Lévy Walks Evolve Through Interaction Between Movement and Environmental Complexity , 2011, Science.

[68]  A. Reynolds Liberating Lévy walk research from the shackles of optimal foraging. , 2015, Physics of life reviews.

[69]  S. Havlin,et al.  Comment on "Inverse Square Lévy Walks are not Optimal Search Strategies for d≥2". , 2021, Physical review letters.

[70]  Jonathan V Selinger,et al.  Active Brownian particles near straight or curved walls: Pressure and boundary layers. , 2016, Physical review. E.

[71]  Ralf Metzler,et al.  Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking. , 2010, Physical chemistry chemical physics : PCCP.

[72]  W. Marsden I and J , 2012 .

[73]  J. Stoyanov A Guide to First‐passage Processes , 2003 .

[74]  Peter W. Glynn,et al.  Stochastic Simulation: Algorithms and Analysis , 2007 .

[75]  H E Stanley,et al.  Average time spent by Lévy flights and walks on an interval with absorbing boundaries. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  L. Giuggioli,et al.  From Micro-to-Macro: How the Movement Statistics of Individual Walkers Affect the Formation of Segregated Territories in the Territorial Random Walk Model , 2019, Front. Phys..

[77]  J. Hosking Modeling persistence in hydrological time series using fractional differencing , 1984 .

[78]  Frederic Bartumeus,et al.  First-passage times in multiscale random walks: The impact of movement scales on search efficiency. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  Michael F. Shlesinger,et al.  Strange kinetics , 1993, Nature.

[80]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[81]  A. Chechkin,et al.  First passage behaviour of fractional Brownian motion in two-dimensional wedge domains , 2011, 1102.3633.

[82]  Nicolas E. Humphries,et al.  Environmental context explains Lévy and Brownian movement patterns of marine predators , 2010, Nature.

[83]  Johannes Textor,et al.  Inverse Square Lévy Walks are not Optimal Search Strategies for d≥2. , 2020, Physical review letters.

[84]  Simon Benhamou,et al.  How many animals really do the Lévy walk? , 2008, Ecology.

[85]  Karl Pearson,et al.  A mathematical theory of random migration , 2011 .

[86]  O. Bénichou,et al.  Mean first-passage times of non-Markovian random walkers in confinement , 2016, Nature.

[87]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[88]  Andrey G. Cherstvy,et al.  Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. , 2014, Physical chemistry chemical physics : PCCP.

[89]  Andy M. Reynolds,et al.  Scale-free animal movement patterns: Lévy walks outperform fractional Brownian motions and fractional Lévy motions in random search scenarios , 2009 .

[90]  R. Metzler,et al.  Fractional Brownian motion in a finite interval: correlations effect depletion or accretion zones of particles near boundaries , 2019, New Journal of Physics.

[91]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[92]  O. Bénichou,et al.  From first-passage times of random walks in confinement to geometry-controlled kinetics , 2014 .

[93]  R. Davies,et al.  Tests for Hurst effect , 1987 .

[94]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[95]  Front , 2020, 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4).

[96]  Rainer Klages,et al.  Comparison of pure and combined search strategies for single and multiple targets , 2017, 1710.11411.

[97]  Julien Tailleur,et al.  How Far from Equilibrium Is Active Matter? , 2016, Physical review letters.

[98]  Michel Mandjes,et al.  ON SPECTRAL SIMULATION OF FRACTIONAL BROWNIAN MOTION , 2003, Probability in the Engineering and Informational Sciences.

[99]  P. A. Prince,et al.  Lévy flight search patterns of wandering albatrosses , 1996, Nature.

[100]  Sidney Redner,et al.  First-passage phenomena and their applications , 2014 .

[101]  G. Volpe,et al.  Active Particles in Complex and Crowded Environments , 2016, 1602.00081.

[102]  E. Revilla,et al.  A movement ecology paradigm for unifying organismal movement research , 2008, Proceedings of the National Academy of Sciences.

[103]  L. Giuggioli Exact Spatiotemporal Dynamics of Confined Lattice Random Walks in Arbitrary Dimensions: A Century after Smoluchowski and Pólya , 2020 .

[104]  Normal and anomalous fluctuation relations for Gaussian stochastic dynamics , 2012, 1210.4380.

[105]  G. Pyke Understanding movements of organisms: it's time to abandon the Lévy foraging hypothesis , 2015 .

[106]  Amos Korman,et al.  Intermittent inverse-square Lévy walks are optimal for finding targets of all sizes , 2020, Science Advances.

[107]  Ralf Metzler,et al.  Lévy strategies in intermittent search processes are advantageous , 2008, Proceedings of the National Academy of Sciences.

[108]  Giorgio Volpe,et al.  The topography of the environment alters the optimal search strategy for active particles , 2017, Proceedings of the National Academy of Sciences.

[109]  Hazel R. Parry,et al.  Optimal Lévy-flight foraging in a finite landscape , 2014, Journal of The Royal Society Interface.

[110]  Andrea J. Liu,et al.  Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells , 2012, Nature.

[111]  Y. Gliklikh The Langevin Equation , 1997 .

[112]  M. Weiss Probing the Interior of Living Cells with Fluorescence Correlation Spectroscopy , 2008, Annals of the New York Academy of Sciences.

[113]  Walter Willinger,et al.  Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level , 1997, TNET.

[114]  O Bénichou,et al.  Geometry-controlled kinetics. , 2010, Nature chemistry.

[115]  M. Weiss,et al.  Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. , 2004, Biophysical journal.

[116]  O. Bénichou,et al.  Universal first-passage statistics in aging media. , 2017, Physical review. E.