A Comparative Survey of Non-Adaptive Pooling Designs

. .. •• • •• • • •• •• . .. . ........ • .. . . . • •• - .. • • • •• .. . . ... • • .... .. ...... • • ••••• • • ... . ... . .. . .. . .. . ..... . .. • . . . ... .. .. • ••• • •• • . .. .. . .... . .... • • • . . . .. . .. .. ... . ... . ......... . • • •• • . . . .. · .... · . • ... . ... .. .. .. . . .... ..... .. ... • • • • • ... . . .. . ••• ..... -... .. . .. - ••••••••••• .. • ••••••• ••••••••••••••••••••

[1]  M. Sobel,et al.  Group testing to eliminate efficiently all defectives in a binomial sample , 1959 .

[2]  X. Estivill,et al.  Continuum of overlapping clones spanning the entire human chromosome 21q , 1992, Nature.

[3]  G. Evans,et al.  Physical mapping of complex genomes by cosmid multiplex analysis. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Jack K. Wolf,et al.  Born again group testing: Multiaccess communications , 1985, IEEE Trans. Inf. Theory.

[5]  Vojtech Rödl,et al.  On a Packing and Covering Problem , 1985, Eur. J. Comb..

[6]  Maurice Kraitchik La mathématique des jeux ou Récréations mathématiques , 1930 .

[7]  Hanfried Lenz,et al.  Design theory , 1985 .

[8]  Richard C. Singleton,et al.  Nonrandom binary superimposed codes , 1964, IEEE Trans. Inf. Theory.

[9]  F. K. Hwang,et al.  Robust Group Testing , 1984 .

[10]  S. Ulam,et al.  Adventures of a Mathematician , 2019, Mathematics: People · Problems · Results.

[11]  Helmut Schneider,et al.  Adaptive procedures for the two-stage group-testing problems based on prior distributions and costs , 1990 .

[12]  Peter Damaschke A Tight Upper Bound for Group Testing in Graphs , 1994, Discret. Appl. Math..

[13]  C. Amemiya,et al.  A two-dimensional YAC pooling strategy for library screening via STS and Alu-PCR methods. , 1992, Nucleic acids research.

[14]  Arkadii G. D'yachkov,et al.  A survey of superimposed code theory , 1983 .

[15]  R. Dorfman The Detection of Defective Members of Large Populations , 1943 .

[16]  L. Zhu,et al.  On sets of three mols with holes , 1985, Discret. Math..

[17]  D. Torney,et al.  Construction and characterization of a YAC library with a low frequency of chimeric clones from flow-sorted human chromosome 9. , 1993, Genomics.

[18]  P. Erdös,et al.  Families of finite sets in which no set is covered by the union ofr others , 1985 .

[19]  Douglas R. Stinson Hill-Climbing Algerithms for the Construction of Combinatorial Designs , 1985 .

[20]  J. Thas,et al.  General Galois geometries , 1992 .

[21]  E. Barillot,et al.  Theoretical analysis of library screening using a N-dimensional pooling strategy. , 1991, Nucleic acids research.

[22]  David C. Torney,et al.  Optimal Pooling Designs with Error Detection , 1994, J. Comb. Theory, Ser. A.

[23]  I. Anderson Combinatorial Designs: Construction Methods , 1990 .

[24]  L Wang,et al.  Peptoids: a modular approach to drug discovery. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[25]  V. V. Rykov,et al.  Superimposed distance codes , 1989 .

[26]  Emanuel Knill,et al.  Lower bounds for identifying subset members with subset queries , 1994, SODA '95.

[27]  L. Hood,et al.  A common language for physical mapping of the human genome. , 1989, Science.

[28]  Miklós Ruszinkó,et al.  On the upper bound of the size of the r -cover-free families , 1994 .

[29]  M V Olson,et al.  Systematic screening of yeast artificial-chromosome libraries by use of the polymerase chain reaction. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[30]  D. R. Hughes,et al.  On t-Designs and Groups , 1965 .

[31]  D. Balding,et al.  Efficient pooling designs for library screening. , 1994, Genomics.