RESEARCH ARTICLE Empirical Likelihood Analysis for the Heteroscedastic Accelerated Failure Time Model

two dierent formulations of empirical likelihood that correspond to these models. In this manuscript, we revisit this distinction for the accelerated failure time model under random right censoring. We identify two dierent empirical likelihood formulations under random right censoring, case-wise and residual-wise, each reecting the relevant features of the stochastic model assumed to have generated the data. We specically propose the case-wise empirical likelihood as a computationally simple inference method for the accelerated failure time model with heteroscedastic errors. A nonparametric version of Wilks’ theorem is shown to hold for the resulting likelihood ratio. The results are also applicable to censored quantile regression, illustrated in an example.

[1]  Zhiliang Ying,et al.  Large Sample Theory of a Modified Buckley-James Estimator for Regression Analysis with Censored Data , 1991 .

[2]  Winfried Stute,et al.  NONLINEAR CENSORED REGRESSION , 2003 .

[3]  Mai Zhou,et al.  Empirical likelihood analysis of the Buckley-James estimator. , 2008, Journal of multivariate analysis.

[4]  James M. Robins,et al.  Unified Methods for Censored Longitudinal Data and Causality , 2003 .

[5]  Jian Huang,et al.  Least absolute deviations estimation for the accelerated failure time model , 2007 .

[6]  Bradley Efron,et al.  FISHER'S INFORMATION IN TERMS OF THE HAZARD RATE' , 1990 .

[7]  R. Koenker,et al.  Regression Quantiles , 2007 .

[8]  Limin Peng,et al.  Survival Analysis With Quantile Regression Models , 2008 .

[9]  Mai Zhou,et al.  Empirical Likelihood Ratio in Terms of Cumulative Hazard Function for Censored Data , 2002 .

[10]  A. Owen Empirical likelihood ratio confidence intervals for a single functional , 1988 .

[11]  D. Cox Regression Models and Life-Tables , 1972 .

[12]  R. Koenker,et al.  Robust Tests for Heteroscedasticity Based on Regression Quantiles , 1982 .

[13]  Hira L. Koul,et al.  Large-sample statistics based on quadratic dispersion , 1988 .

[14]  Song Yang,et al.  Censored Median Regression Using Weighted Empirical Survival and Hazard Functions , 1999 .

[15]  Lan Wang,et al.  Locally Weighted Censored Quantile Regression , 2009 .

[16]  J. Earle,et al.  Sequencing and schedule effects of cisplatin plus etoposide in small-cell lung cancer: results of a North Central Cancer Treatment Group randomized clinical trial. , 1994, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[17]  Mai Zhou,et al.  M-estimation in censored linear models , 1992 .

[18]  Bo E. Honoré,et al.  Quantile regression under random censoring , 2002 .

[19]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[20]  Mai Zhou,et al.  Empirical Likelihood Ratio With Arbitrarily Censored/Truncated Data by EM Algorithm , 2005 .

[21]  S. R. Searle Linear Models , 1971 .

[22]  V. Chernozhukov,et al.  An MCMC approach to classical estimation , 2003 .

[23]  Z. Ying,et al.  On least-squares regression with censored data , 2006 .

[24]  L J Wei,et al.  Linear regression analysis based on Buckley-James estimating equation. , 1992, Biometrics.

[25]  D. Freedman Bootstrapping Regression Models , 1981 .

[26]  Bing-Yi Jing,et al.  Empirical Likelihood for Censored Linear Regression , 2001 .

[27]  I. James,et al.  Linear regression with censored data , 1979 .

[28]  A. Owen Empirical Likelihood Ratio Confidence Regions , 1990 .

[29]  J. Powell,et al.  Censored regression quantiles , 1986 .

[30]  Mai Zhou,et al.  Empirical likelihood analysis of the rank estimator for the censored accelerated failure time model , 2005 .

[31]  Andrea Rotnitzky,et al.  Inverse probability weighted estimation in survival analysis , 2003 .

[32]  Tze Leung Lai,et al.  Nonparametric Estimation and Regression Analysis with Left-Truncated and Right-Censored Data , 1996 .

[33]  Z. Ying,et al.  Rank-based inference for the accelerated failure time model , 2003 .

[34]  Rupert G. Miller Least squares regression with censored data , 1976 .

[35]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[36]  Lin Js,et al.  Linear regression analysis based on Buckley-James estimating equation. , 1992 .

[37]  Nancy Reid,et al.  On “A conversation with Sir David Cox” , 1994, Issue 5.2, Spring 2023.

[38]  Lee-Jen Wei,et al.  The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis. , 1992, Statistics in medicine.

[39]  DavidR . Thomas,et al.  Confidence Interval Estimation of Survival Probabilities for Censored Data , 1975 .

[40]  Winfried Stute,et al.  Consistent estimation under random censorship when covariables are present , 1993 .

[41]  J. Lawless,et al.  Empirical Likelihood and General Estimating Equations , 1994 .

[42]  Art B. Owen,et al.  Empirical Likelihood for Linear Models , 1991 .

[43]  Winfried Stute,et al.  Distributional Convergence under Random Censorship when Covariables are Present , 1996 .

[44]  Michael G. Akritas,et al.  The central limit theorem under censoring , 2000 .

[45]  Gang Li,et al.  EMPIRICAL LIKELIHOOD REGRESSION ANALYSIS FOR RIGHT CENSORED DATA , 2003 .

[46]  Jinyong Hahn,et al.  An Alternative Estimator for the Censored Quantile Regression Model , 1998 .

[47]  Changlin Mei,et al.  The Koul-Susarla-Van Ryzin and weighted least squares estimates for censored linear regression model: A comparative study , 2007, Comput. Stat. Data Anal..

[48]  Gang Li,et al.  Empirical Likelihood Semiparametric Regression Analysis under Random Censorship , 2002 .

[49]  Stephen Portnoy,et al.  Censored Regression Quantiles , 2003 .

[50]  Mai Zhou,et al.  Asymptotic Normality of the `Synthetic Data' Regression Estimator for Censored Survival Data , 1992 .

[51]  E. Kaplan,et al.  Nonparametric Estimation from Incomplete Observations , 1958 .

[52]  Susan A. Murphy,et al.  Semiparametric likelihood ratio inference , 1997 .

[53]  J. Powell,et al.  Least absolute deviations estimation for the censored regression model , 1984 .

[54]  Sue Leurgans,et al.  Linear models, random censoring and synthetic data , 1987 .

[55]  Zhiliang Ying,et al.  Survival analysis with median regression models , 1995 .

[56]  J. V. Ryzin,et al.  Regression Analysis with Randomly Right-Censored Data , 1981 .

[57]  John D. Kalbfleisch,et al.  The Statistical Analysis of Failure Data , 1986, IEEE Transactions on Reliability.