Corneal stromal ablation with femtosecond ultraviolet pulses in rabbits

[1]  D. Azar,et al.  Identical excimer laser PTK treatments in rabbits result in two distinct haze responses. , 2006, Investigative ophthalmology & visual science.

[2]  C. Donitzky,et al.  First clinical results of epithelial laser in situ keratomileusis with a 1000 Hz excimer laser , 2010, Journal of cataract and refractive surgery.

[3]  P. Carpineto,et al.  Femtosecond laser arcuate keratotomy for the correction of high astigmatism after keratoplasty. , 2009, Ophthalmology.

[4]  Perry S Binder,et al.  Flap dimensions created with the IntraLase FS laser , 2004, Journal of cataract and refractive surgery.

[5]  S. Schallhorn,et al.  Femtosecond laser versus mechanical microkeratome: a retrospective comparison of visual outcomes at 3 months. , 2009, Journal of refractive surgery.

[6]  I. Ratkay-Traub,et al.  Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation. , 2001, Ophthalmology clinics of North America.

[7]  Renato Ambrósio,et al.  Apoptosis, necrosis, proliferation, and myofibroblast generation in the stroma following LASIK and PRK. , 2003, Experimental eye research.

[8]  R. Mohan,et al.  Effect of prophylactic and therapeutic mitomycin C on corneal apoptosis, cellular proliferation, haze, and long-term keratocyte density in rabbits. , 2006, Journal of refractive surgery.

[9]  F. Fankhauser,et al.  Applanation-free femtosecond laser processing of the cornea , 2011, Biomedical optics express.

[10]  Osvaldas Ruksenas,et al.  Corneal shaping and ablation of transparent media by femtosecond pulses in deep ultraviolet range , 2010, Journal of cataract and refractive surgery.

[11]  Gianluca Carifi,et al.  Femtosecond laser capsulotomy. , 2011, Journal of cataract and refractive surgery.

[12]  L. Nichamin,et al.  Anterior capsulotomy with an ultrashort‐pulse laser , 2011, Journal of cataract and refractive surgery.

[13]  Zoltan Nagy,et al.  Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery. , 2009, Journal of refractive surgery.

[14]  Michael Mrochen,et al.  Simulation of eye-tracker latency, spot size, and ablation pulse depth on the correction of higher order wavefront aberrations with scanning spot laser systems. , 2005, Journal of refractive surgery.

[15]  X. H. Hu,et al.  Absorption spectra of corneas in the far ultraviolet region. , 1997, Investigative ophthalmology & visual science.

[16]  E. Manche,et al.  Comparison of intraoperative subtraction pachymetry and postoperative anterior segment optical coherence tomography of laser in situ keratomileusis flaps , 2011, Journal of cataract and refractive surgery.

[17]  Markus Sticker,et al.  First efficacy and safety study of femtosecond lenticule extraction for the correction of myopia: Six‐month results , 2008, Journal of cataract and refractive surgery.

[18]  Donald K. Cohen,et al.  Techniques for measuring 1-μm diam Gaussian beams , 1984 .

[19]  R. Shah,et al.  Results of small incision lenticule extraction: All‐in‐one femtosecond laser refractive surgery , 2011, Journal of cataract and refractive surgery.

[20]  G O Waring,et al.  Wound healing after excimer laser keratomileusis (photorefractive keratectomy) in monkeys. , 1990, Archives of ophthalmology.

[21]  R H Eikelboom,et al.  Absorption of 193- and 213-nm laser wavelengths in sodium chloride solution and balanced salt solution. , 2001, Archives of ophthalmology.

[22]  Nikolaos S. Tsiklis,et al.  One‐year results of photorefractive keratectomy and laser in situ keratomileusis for myopia using a 213 nm wavelength solid‐state laser , 2007, Journal of cataract and refractive surgery.

[23]  S. Jain,et al.  Objective measurement of corneal light scattering after excimer laser keratectomy. , 1996, Ophthalmology.

[24]  J. Alió,et al.  Refractive and aberrometric outcomes of intracorneal ring segments for keratoconus: mechanical versus femtosecond-assisted procedures. , 2009, Ophthalmology.

[25]  L. Ruiz,et al.  Intrastromal correction of presbyopia using a femtosecond laser system. , 2009, Journal of refractive surgery.

[26]  Georg Korn,et al.  Experimental and clinical investigation of efficiency and ablation profiles of new solid‐state deep‐ultraviolet laser for vision correction , 2004, Journal of cataract and refractive surgery.

[27]  Brani Vidakovic,et al.  Nonparametric Statistics with Applications to Science and Engineering (Wiley Series in Probability and Statistics) , 2007 .

[28]  T. Kohnen,et al.  Corneal architecture of femtosecond laser and microkeratome flaps imaged by anterior segment optical coherence tomography , 2009, Journal of cataract and refractive surgery.

[29]  W M Petroll,et al.  Corneal haze development after PRK is regulated by volume of stromal tissue removal. , 1998, Cornea.

[30]  W. Steen Laser Material Processing , 1991 .

[31]  Karsten König,et al.  Ultraviolet femtosecond laser creation of corneal flap. , 2009, Journal of refractive surgery.

[32]  J. Mehta,et al.  Outcomes of femtosecond laser-assisted penetrating keratoplasty. , 2008, American journal of ophthalmology.

[33]  Matthew Kim,et al.  Results of penetrating keratoplasty performed with a femtosecond laser zigzag incision initial report. , 2007, Ophthalmology.