Derivative Evaluation and Conditional Random Selection for Accelerating Genetic Algorithms
暂无分享,去创建一个
[1] Won Keun Min,et al. On Fuzzy M-Sets and Fuzzy M-Continuity , 2005, Int. J. Fuzzy Log. Intell. Syst..
[2] P. Siarry,et al. An improvement of the standard genetic algorithm fighting premature convergence in continuous optimization , 2000 .
[3] Peter Ross,et al. Adapting Operator Settings in Genetic Algorithms , 1998, Evolutionary Computation.
[4] Sung Hoon Jung,et al. Queen-bee evolution for genetic algorithms , 2003 .
[5] M. C. Sinclair. Operator-probability adaptation in a genetic-algorithm/heuristic hybrid for optical network wavelength allocation , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).
[6] I. Douglas,et al. Simple Genetic Algorithm with Local Tuning: Efficient Global Optimizing Technique , 1998 .
[7] David B. Fogel,et al. An introduction to simulated evolutionary optimization , 1994, IEEE Trans. Neural Networks.
[8] C. L. Karr,et al. Fuzzy control of pH using genetic algorithms , 1993, IEEE Trans. Fuzzy Syst..
[9] R. Hinterding,et al. Gaussian mutation and self-adaption for numeric genetic algorithms , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.
[10] Zbigniew Michalewicz,et al. Adaptation in evolutionary computation: a survey , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).
[11] Abhijit S. Pandya,et al. Neural Network Training Using a GMDH Type Algorithm , 2005, Int. J. Fuzzy Log. Intell. Syst..
[12] Yang Shiyou,et al. An improved genetic algorithm for global optimization of electromagnetic problems , 2001 .