On the metric projection onto prox-regular subsets of Riemannian manifolds

Prox-regular subsets of Riemannian manifolds are introduced. A characterization of prox-regular sets based on the hypomonotonicity of the truncated limiting normal cone is obtained. Moreover, some properties of metric projection mapping and distance function corresponding to the proxregular sets are presented.

[1]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[2]  I. Holopainen Riemannian Geometry , 1927, Nature.

[3]  J. Whitehead,et al.  CONVEX REGIONS IN THE GEOMETRY OF PATHS , 1932 .

[4]  Rolf Walter,et al.  On the metric projection onto convex sets in riemannian spaces , 1974 .

[5]  R. Greene,et al.  Convex functions on complete noncompact manifolds: Topological structure , 1981 .

[6]  D. Motreanu,et al.  Quasi-tangent vectors in flow-invariance and optimization problems on Banach manifolds , 1982 .

[7]  A. Shapiro Perturbation analysis of optimization problems in banach spaces , 1992 .

[8]  Alexander Shapiro Existence and Differentiability of Metric Projections in Hilbert Spaces , 1994, SIAM J. Optim..

[9]  R. Rockafellar,et al.  Prox-regular functions in variational analysis , 1996 .

[10]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[11]  A. Mondino ON RIEMANNIAN MANIFOLDS , 1999 .

[12]  R. Rockafellar,et al.  Local differentiability of distance functions , 2000 .

[13]  Théorème de Motzkin en courbure négative , 2000 .

[14]  O. P. Ferreira,et al.  Contributions to the Study of Monotone Vector Fields , 2002 .

[15]  J. Ferrera,et al.  Nonsmooth analysis and Hamilton–Jacobi equations on Riemannian manifolds , 2003, math/0305427.

[16]  Juan Ferrera,et al.  Proximal Calculus on Riemannian Manifolds , 2005 .

[17]  D. Epstein,et al.  Fundamentals of hyperbolic geometry : selected expositions , 2006 .

[18]  M. R. Pouryayevali,et al.  Invariant monotone vector fields on Riemannian manifolds , 2009 .

[19]  J. H. Wang,et al.  Monotone and Accretive Vector Fields on Riemannian Manifolds , 2010 .

[20]  M. R. Pouryayevali,et al.  Generalized gradients and characterization of epi-Lipschitz sets in Riemannian manifolds , 2011 .