Mössbauer spectroscopic and thermogravimetric studies of tin-clay complexes

Abstract Complexes of SnCl2/montmorillonite have been prepared from solutions which contained 10, 20, 40 and 200 times the cation exchange capacity of the clay, resulting in complexes which contained 1·7, 1·6, 2·8 and 4·6 wt% of tin. Detailed thermogravimetric and variable temperature 119Sn Mössbauer spectroscopic studies of these complexes, both as prepared and following back exchange with Ca2+-ions, have shown that (i) the complexes are quite acidic in nature, and (ii) the majority of the Sn forms an oxy/hydroxy coating over the montmorillonite surface in which the vibrational freedom of Sn depends upon both the Sn content and the state of hydration of the coating.

[1]  C. Breen Thermogravimetric study of the desorption of cyclohexylamine and pyridine from an acid-treated Wyoming bentonite , 1991, Clay Minerals.

[2]  P. Komadel,et al.  Alteration of smectites by treatments with hydrochloric acid and sodium carbonate solutions , 1990 .

[3]  D. Petridis,et al.  Pillaring of montmorillonite by organotin cationic complexes , 1989 .

[4]  A. Kostikas,et al.  Intercalation of dimethyltin(IV) cationic complexes in montmorillonite , 1988 .

[5]  J. M. Adams Synthetic organic chemistry using pillared, cation-exchanged and acid-treated montmorillonite catalysts — A review , 1987 .

[6]  C. Breen,et al.  The acidity of trivalent cation-exchanged montmorillonite. Temperature-Programmed desorption and infrared studies of pyridine and n-butylamine , 1987, Clay Minerals.

[7]  K. Molloy,et al.  Organometallic cation–exchanged phyllosilicates: A high spacing intercalate formed from N-methyl-(3-triphenylstannyl)pyridinium exchanged montmorillonite , 1987 .

[8]  K. Quill,et al.  Organotin biocides. Part 2. Variable-temperature 119Sn Mössbauer study of phenyl- and cyclohexyl-tin compounds , 1985 .

[9]  I. W. Nowell,et al.  Organotin biocides: I. The structure of triphenyltin acetate , 1984 .

[10]  J. Thomas,et al.  Organic reactions catalysed by sheet silicates: ester production by the direct addition of carboxylic acids to alkenes , 1984 .

[11]  J. Thomas,et al.  Organic reactions catalysed by sheet silicates: ether formation by the intermolecular dehydration of alcohols and by addition of alcohols to alkenes , 1984 .

[12]  M. Atkins,et al.  Montmorillonite catalysts for ethylene hydration , 1983, Clay Minerals.

[13]  B. Goodman,et al.  Characterization of iron(II)-and iron(III)- exchanged montmorillonite and hectorite using the Mössbauer effect , 1983, Clay Minerals.

[14]  J. M. Adams,et al.  Synthesis of Methyl-t-Butyl Ether from Methanol and Isobutene Using a Clay Catalyst , 1982 .

[15]  A. Banin,et al.  Characterization of Adsorbed Iron in Montmorillonite by Mössbauer Spectroscopy , 1982 .

[16]  A. Banin,et al.  Fe2+-Fe3+ Transformations in Clay and Resin Ion-Exchange Systems , 1980 .

[17]  M. Cruz,et al.  Metallation-Demetallation Reaction of Tin Tetra(4-Pyridyl) Porphyrin in Na-Hectorite , 1980 .

[18]  P. Harrison,et al.  Temperature dependence of the Mössbauer recoil-free fraction as a probe of the lattice structure of tin compounds , 1977 .

[19]  A. Ritchie Chemical methods of silicate analysis , 1973 .

[20]  Duwayne M. Anderson,et al.  LOW-TEMPERATURE PHASES ON INTERFACIAL WATER IN CLAY-WATER SYSTEMS , 1970 .

[21]  A. Hecht,et al.  Étude des phénomènes de transport de l'eau adsorbée dans certains minéraux argileux par la résonance magnétique nucléaire , 1966 .

[22]  R. Blaine PROTON MAGNETIC RESONANCE IN CLAY MINERALS , 1961 .