A two-class brain computer interface to freely navigate through virtual worlds / Ein Zwei-Klassen-Brain-Computer-Interface zur freien Navigation durch virtuelle Welten

Abstract A brain computer interface that enables navigation through a virtual environment (VE) using four different navigation commands (turn right, turn left, move forward and move back) is presented. A graphical interface allows subjects to select a specific command. In this interface, the different navigation commands are surrounding a circle. A bar in the center of the circle is continuously rotating. The subject controls, by only two mental tasks, the bar extension to reach the chosen command. In this study, after an initial training based on three sessions, 8 out of 15 naive subjects were able to navigate through the VE discriminating between imagination of right-hand movements and relaxed state. All subjects (except one) improved their performance in each run and a mean error rate of 23.75% was obtained. Zusammenfassung Ein Brain-Computer-Interface, das die Navigation durch eine virtuelle Umwelt ermöglicht und dabei vier verschiedene Navigationskommandos (rechts drehen, links drehen, vorwärts oder rückwärts bewegen) benutzt, wird präsentiert. Ein grafisches Interface erlaubt den Probanden, spezifische Kommandos auszuwählen. In diesem Interface sind die verschiedenen Navigationskommandos auf einem Kreis dargestellt. Ein Strich rotiert ständig in der Mitte des Kreises. Der Proband kontrolliert mit nur zwei Denkzielen den Strich in der Weise, dass er das gewünschte Kommando erreicht. Nach einem Eingangstraining von drei Sitzungen waren acht von fünfzehn unbefangenen Personen in der Lage, durch das virtuelle Umfeld zu navigieren, indem sie zwischen rechtshändigen Bewegungen und Ruhestadium unterschieden. Mit Ausnahme eines Probanden verbesserten alle ihre Ergebnisse bei jedem Durchgang, und eine durchschnittliche Fehlerquote von 23.75% wurde erreicht.

[1]  Gert Pfurtscheller,et al.  Walking from thought , 2006, Brain Research.

[2]  Christa Neuper,et al.  Walking by Thinking: The Brainwaves Are Crucial, Not the Muscles! , 2006, PRESENCE: Teleoperators and Virtual Environments.

[3]  Gernot R. Müller-Putz,et al.  Self-Paced (Asynchronous) BCI Control of a Wheelchair in Virtual Environments: A Case Study with a Tetraplegic , 2007, Comput. Intell. Neurosci..

[4]  J.D. Bayliss,et al.  Use of the evoked potential P3 component for control in a virtual apartment , 2003, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[5]  Christa Neuper,et al.  An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate , 2004, IEEE Transactions on Biomedical Engineering.

[6]  G. Pfurtscheller,et al.  Information transfer rate in a five-classes brain-computer interface , 2001, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[7]  G. Pfurtscheller,et al.  Brain-Computer Interfaces for Communication and Control. , 2011, Communications of the ACM.

[8]  G Pfurtscheller,et al.  Exploring Virtual Environments with an EEG-based BCI through Motor Imagery / Erkundung von virtuellen Welten durch Bewegungsvorstellungen mit Hilfe eines EEG-basierten BCI , 2005, Biomedizinische Technik. Biomedical engineering.

[9]  G. Pfurtscheller,et al.  Rapid prototyping of an EEG-based brain-computer interface (BCI) , 2001, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[10]  G. Pfurtscheller,et al.  How many people are able to operate an EEG-based brain-computer interface (BCI)? , 2003, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[11]  G. Pfurtscheller,et al.  Brain–Computer Communication: Motivation, Aim, and Impact of Exploring a Virtual Apartment , 2007, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[12]  Horst Bischof,et al.  Toward Self-Paced Brain–Computer Communication: Navigation Through Virtual Worlds , 2008, IEEE Transactions on Biomedical Engineering.

[13]  John R. Smith,et al.  Steady-State VEP-Based Brain-Computer Interface Control in an Immersive 3D Gaming Environment , 2005, EURASIP J. Adv. Signal Process..

[14]  G. Pfurtscheller,et al.  ‘Thought’ – control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia , 2003, Neuroscience Letters.

[15]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[16]  Gernot R. Müller-Putz,et al.  "Virtual keyboard" controlled by spontaneous EEG activity , 2001, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[17]  Gert Pfurtscheller,et al.  Navigating Virtual Reality by Thought: What Is It Like? , 2007, PRESENCE: Teleoperators and Virtual Environments.

[18]  Benjamin Blankertz,et al.  THE BERLIN BRAIN-COMPUTER INTERFACE PRESENTS THE NOVEL MENTAL TYPEWRITER HEX-O-SPELL , 2006 .

[19]  S. Voloshynovskiy,et al.  EEG-Based Synchronized Brain-Computer Interfaces: A Model for Optimizing the Number of Mental Tasks , 2007, IEEE Transactions on Neural Systems and Rehabilitation Engineering.