Composite anion exchange membranes based on polysulfone and silica nanoscale ionic materials for water electrolyzers

[1]  V. Baglio,et al.  Ruthenium-loaded titania nanotube arrays as catalysts for the hydrogen evolution reaction in alkaline membrane electrolysis , 2023, Journal of Power Sources.

[2]  M. Symes,et al.  A Standard Electrolyzer Test Cell Design for Evaluating Catalysts and Cell Components for Anion Exchange Membrane Water Electrolysis , 2023, Electrochimica Acta.

[3]  A. Pushkarev,et al.  On the Operational Conditions’ Effect on the Performance of an Anion Exchange Membrane Water Electrolyzer: Electrochemical Impedance Spectroscopy Study , 2023, Membranes.

[4]  A. Arenillas,et al.  NiFe2O4 hierarchical nanoparticles as electrocatalyst for anion exchange membrane water electrolysis , 2023, Journal of Power Sources.

[5]  V. Baglio,et al.  Synthesis, Characterization and Water Electrolyzer Cell Tests of Poly(Biphenyl Piperidinium) Anion Exchange Membranes , 2023, SSRN Electronic Journal.

[6]  V. Baglio,et al.  Anion Exchange Membrane Water Electrolysis Based on Nickel Ferrite Catalysts , 2022, ChemElectroChem.

[7]  Muhammad Habib Ur Rehman,et al.  High-performance anion-exchange membrane water electrolysis by polysulfone grafted with tetramethyl ammonium functionalities , 2022, Materials Today Sustainability.

[8]  V. Baglio,et al.  Optimal operating conditions evaluation of an anion-exchange-membrane electrolyzer based on FUMASEP® FAA3-50 membrane , 2022, International Journal of Hydrogen Energy.

[9]  C. Bock,et al.  Anion-Exchange Membrane Water Electrolyzers , 2022, Chemical reviews.

[10]  A. Aricò,et al.  Performance and stability of a critical raw materials-free anion exchange membrane electrolysis cell , 2022, Electrochimica Acta.

[11]  Wei Liu,et al.  Green hydrogen standard in China: Standard and evaluation of low-carbon hydrogen, clean hydrogen, and renewable hydrogen , 2022, International Journal of Hydrogen Energy.

[12]  Y. Sung,et al.  High-performance and durable water electrolysis using a highly conductive and stable anion-exchange membrane , 2022, International Journal of Hydrogen Energy.

[13]  Dario R. Dekel,et al.  Effect of LDH Platelets on the Transport Properties and Carbonation of Anion Exchange Membranes , 2021, Electrochimica Acta.

[14]  Jingshuai Yang,et al.  Two new anion exchange membranes based on poly(bis-arylimidazolium) ionenes blend polybenzimidazole , 2021, Polymer.

[15]  F. Speck,et al.  Electrochemical- and mechanical stability of catalyst layers in anion exchange membrane water electrolysis , 2021, International Journal of Hydrogen Energy.

[16]  Xudong Sun,et al.  Polysulfone grafted with anthraquinone-hydroanthraquinone redox as a flexible membrane electrode for aqueous batteries , 2021, Polymer.

[17]  Zhe Wang,et al.  Long-term durable anion exchange membranes based on imidazole-functionalized poly(ether ether ketone) incorporating cationic metal-organic framework , 2021, Advanced Powder Materials.

[18]  Cy H. Fujimoto,et al.  Elucidating the Role of Hydroxide Electrolyte on Anion-Exchange-Membrane Water Electrolyzer Performance , 2021, Journal of The Electrochemical Society.

[19]  B. Pivovar,et al.  Evaluating the effect of membrane-ionomer combinations and supporting electrolytes on the performance of cobalt nanoparticle anodes in anion exchange membrane electrolyzers , 2021 .

[20]  Nanwen Li,et al.  Piperidinium functionalized aryl ether-free polyaromatics as anion exchange membrane for water electrolysers: Performance and durability , 2021 .

[21]  M. El‐Halwagi,et al.  Green hydrogen as an alternative fuel for the shipping industry , 2021 .

[22]  Hyung-Man Kim,et al.  Comprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large-scale hydrogen production , 2021, Scientific Reports.

[23]  D. Bessarabov,et al.  Comparative study of anion exchange membranes for low-cost water electrolysis , 2020, International Journal of Hydrogen Energy.

[24]  Jianguo Liu,et al.  Porous polybenzimidazole membranes with high ion selectivity for the vanadium redox flow battery , 2020 .

[25]  S. Sunde,et al.  Effect of anion exchange ionomer content on electrode performance in AEM water electrolysis , 2020 .

[26]  D. Gournis,et al.  Titanium Dioxide Grafted on Graphene Oxide: Hybrid Nanofiller for Effective and Low-Cost Proton Exchange Membranes , 2020, Nanomaterials.

[27]  A. Aricò,et al.  Assessment of the FAA3-50 polymer electrolyte in combination with a NiMn2O4 anode catalyst for anion exchange membrane water electrolysis , 2020 .

[28]  S. Holdcroft,et al.  High-performance alkaline water electrolysis using Aemion™ anion exchange membranes , 2020, Journal of Power Sources.

[29]  Y. Liu,et al.  Preparation of anion exchange membrane by efficient functionalization of polysulfone for electrodialysis , 2020 .

[30]  A. Saccà,et al.  Development of Polymeric Membranes Based on Quaternized Polysulfones for AMFC Applications , 2020, Polymers.

[31]  K. Ayers The potential of proton exchange membrane–based electrolysis technology , 2019 .

[32]  M. Khraisheh,et al.  Fabrication and characterization of pyridinium functionalized anion exchange membranes for acid recovery. , 2019, The Science of the total environment.

[33]  Juan D. Fonseca,et al.  Trends in design of distributed energy systems using hydrogen as energy vector: A systematic literature review , 2019, International Journal of Hydrogen Energy.

[34]  S. Greenbaum,et al.  Graphene oxide and sulfonated-derivative: Proton transport properties and electrochemical behavior of Nafion-based nanocomposites , 2019, Electrochimica Acta.

[35]  Hiroshi Ito,et al.  Pressurized operation of anion exchange membrane water electrolysis , 2019, Electrochimica Acta.

[36]  Jong Kwan Kim,et al.  High-performance anion-exchange membrane water electrolysis , 2019, Electrochimica Acta.

[37]  Zhanhu Guo,et al.  Crosslinked norbornene copolymer anion exchange membrane for fuel cells , 2018, Journal of Membrane Science.

[38]  Dario R. Dekel,et al.  Water Uptake Study of Anion Exchange Membranes , 2018 .

[39]  Dario R. Dekel Review of cell performance in anion exchange membrane fuel cells , 2018 .

[40]  C. Simari,et al.  NMR investigation on nanocomposite membranes based on organosilica layered materials bearing different functional groups for PEMFCs , 2017 .

[41]  C. Simari,et al.  A facile approach to fabricating organosilica layered material with sulfonic groups as an efficient filler for polymer electrolyte nanocomposites , 2017 .

[42]  Dario R. Dekel,et al.  Effect of Water on the Stability of Quaternary Ammonium Groups for Anion Exchange Membrane Fuel Cell Applications , 2017 .

[43]  L. Pasquini,et al.  Anionic conducting composite membranes based on aromatic polymer and layered double hydroxides , 2017 .

[44]  Emmanuel P. Giannelis,et al.  Nafion® nanocomposite membranes with enhanced properties at high temperature and low humidity environments , 2016 .

[45]  G. Ranieri,et al.  An NMR study on the molecular dynamic and exchange effects in composite Nafion/sulfated titania membranes for PEMFCs , 2015 .

[46]  A. Aricò,et al.  Electrochemical characterization of a PEM water electrolyzer based on a sulfonated polysulfone membrane , 2013 .

[47]  N. Briguglio,et al.  Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources , 2013, Journal of Applied Electrochemistry.

[48]  E. Sgreccia,et al.  High ionic exchange capacity polyphenylsulfone (SPPSU) and polyethersulfone (SPES) cross-linked by annealing treatment: Thermal stability, hydration level and mechanical properties , 2010 .

[49]  P. Kohl,et al.  Anionic polysulfone ionomers and membranes containing fluorenyl groups for anionic fuel cells , 2009 .

[50]  D. Longmore The principles of magnetic resonance. , 1989, British medical bulletin.

[51]  Lin Zhuang,et al.  Constructing ionic highway in alkaline polymer electrolytes , 2014 .

[52]  I. Dincer Green methods for hydrogen production , 2012 .

[53]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .