Effect of gold nanopillar arrays on the absorption spectrum of a bulk heterojunction organic solar cell.

We report on the effect of arrays of Au nanopillars of controlled size and spacing on the spectral response of a P3HT: PCBM bulk heterojunction solar cell. Prototype nanopillar-patterned devices have nearly the same overall power conversion efficiency as those without nanopillars. The patterned devices do show higher external quantum efficiency and calculated absorption in the wavelength range from approximately 640 nm to 720 nm, where the active layer is not very absorbing. The peak enhancement was approximately 60% at 675 nm. We find evidence that the corresponding resonance involves both localized particle plasmon excitation and multiple reflections/diffraction within the cavity formed by the electrodes. We explore the role of the attenuation coefficient of the active layer on the optical absorption of such an organic photovoltaic device.

[1]  Edward S. Barnard,et al.  Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements , 2009 .

[2]  Peter Bienstman,et al.  Plasmonic absorption enhancement in organic solar cells with thin active layers , 2009 .

[3]  Christoph J. Brabec,et al.  Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors , 2002 .

[4]  Dong Yun Lee,et al.  High efficiency polymer solar cells with wet deposited plasmonic gold nanodots , 2009 .

[5]  E. Hoke,et al.  Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells. , 2009, Nano letters.

[6]  Daniel Derkacs,et al.  Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles , 2006 .

[7]  Jin Young Kim,et al.  Air‐Stable Polymer Electronic Devices , 2007 .

[8]  Stephen R. Forrest,et al.  Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters , 2004 .

[9]  R. W. Christy,et al.  Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd , 1974 .

[10]  Albert Polman,et al.  Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells , 2010 .

[11]  Ludovic Escoubas,et al.  Improving light absorption in organic solar cells by plasmonic contribution , 2009 .

[12]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[13]  K. Sam Shanmugan,et al.  Three Case Studies , 1992 .

[14]  Yoon-Chae Nah,et al.  Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles , 2008 .

[15]  Thomas H. Reilly,et al.  Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics , 2008 .

[16]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[17]  Dieter Meissner,et al.  Metal cluster enhanced organic solar cells , 2000 .

[18]  Mitio Inokuti,et al.  The Optical Properties of Metallic Aluminum , 1997 .

[19]  Carl Hägglund,et al.  Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons , 2008 .

[20]  Chi H. Lee,et al.  Interface effects on the external quantum efficiency of organic bulk heterojunction photodetectors , 2007 .

[21]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[22]  A. Kärkkäinen,et al.  Optical properties of spin-on deposited low temperature titanium oxide thin films. , 2003, Optics express.

[23]  Thomas H. Reilly,et al.  Surface-plasmon enhanced transparent electrodes in organic photovoltaics , 2008 .

[24]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[25]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[26]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[27]  H. Atwater,et al.  Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors , 2009 .

[28]  H. Szmacinski,et al.  Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography , 2006 .

[29]  Carl Hägglund,et al.  Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons , 2008 .

[30]  Albert Polman,et al.  Design principles for particle plasmon enhanced solar cells , 2008 .