Fire in the Earth System

Burn, Baby, Burn Wildfires can have dramatic and devastating effects on landscapes and human structures and are important agents in environmental transformation. Their impacts on nonanthropocentric aspects of the environment, such as ecosystems, biodiversity, carbon reserves, and climate, are often overlooked. Bowman et al. (p. 481) review what is known and what is needed to develop a holistic understanding of the role of fire in the Earth system, particularly in view of the pervasive impact of fires and the likelihood that they will become increasingly difficult to control as climate changes. Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

[1]  S. Chapman Atmospheric Physics And Chemistry , 1942 .

[2]  Robert W. Mutch,et al.  Wildland Fires and Ecosystems--A Hypothesis , 1970 .

[3]  M. L. Heinselman Fire in the Virgin Forests of the Boundary Waters Canoe Area, Minnesota , 1973, Quaternary Research.

[4]  J. Houghton Atmospheric physics and chemistry , 1978, Nature.

[5]  E. Grimm Fire and Other Factors Controlling the Big Woods Vegetation of Minnesota in the Mid‐Nineteenth Century , 1984 .

[6]  Patricia L. Andrews,et al.  Introduction To Wildland Fire , 1984 .

[7]  P. Crutzen,et al.  Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles , 1990, Science.

[8]  James S. Clark,et al.  FIRE AND CLIMATE CHANGE DURING THE LAST 750 YR IN NORTHWESTERN MINNESOTA , 1990 .

[9]  Timothy Peter Jones,et al.  Fossil charcoal, its recognition and palaeoatmospheric significance , 1991 .

[10]  N. Letvin,et al.  Risks of handling HIV , 1991, Nature.

[11]  R. Sepanski,et al.  TRENDS '90: A compendium of data on global change , 1991 .

[12]  P. Vitousek,et al.  Biological invasions by exotic grasses, the grass/fire cycle, and global change , 1992 .

[13]  W. Hao,et al.  Methane production from global biomass burning , 1993 .

[14]  T. Taylor,et al.  The Biology and Evolution of Fossil Plants , 1993 .

[15]  T. Swetnam Fire History and Climate Change in Giant Sequoia Groves , 1993, Science.

[16]  S. Zoltai Cyclic Development of Permafrost in the Peatlands of Northwestern Alberta, Canada , 1993 .

[17]  M. Holmgren,et al.  Are the Responses of Matorral Shrubs Different from Those in an Ecosystem with a Reputed Fire History , 1994 .

[18]  J. Habeck Using General Land Office Records to Assess Forest Succession in Ponderosa Pine/Douglas-fir Forest in Western Montana , 1994 .

[19]  William J. Bond,et al.  Kill thy neighbour: an individulalistic argument for the evolution of flammability , 1995 .

[20]  E. Kasischke,et al.  Fire, Global Warming, and the Carbon Balance of Boreal Forests , 1995 .

[21]  D. Leopold,et al.  Pathogens, Patterns, and Processes in Forest EcosystemsPathogens influence and are influenced by forest development and landscape characteristics , 1995 .

[22]  Alberto Setzer,et al.  Comparison of fire detection in savannas using AVHRR's channel 3 and TM images , 1996 .

[23]  B. W. Wilgen,et al.  Fire and Plants , 1995, Population and Community Biology Series.

[24]  R. Scholes,et al.  Tree-grass interactions in Savannas , 1997 .

[25]  Christopher B. Field,et al.  The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide , 1997 .

[26]  Eepsea The Indonesian Fires and Haze of 1997: The Economic Toll , 1998 .

[27]  W. R. Cofer,et al.  Crown fire emissions of CO2, CO, H2, CH4, and TNMHC from a dense Jack pine boreal forest fire , 1998 .

[28]  M. Bird,et al.  A million-year record of fire in sub-Saharan Africa , 1998, Nature.

[29]  Josep Piñol,et al.  Climate Warming, Wildfire Hazard, and Wildfire Occurrence in Coastal Eastern Spain , 1998 .

[30]  N. Stephenson,et al.  Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales , 1998 .

[31]  T. T. Veblen,et al.  FIRE HISTORY IN NORTHERN PATAGONIA: THE ROLES OF HUMANS AND CLIMATIC VARIATION , 1999 .

[32]  A. Bondeau,et al.  Comparing global models of terrestrial net primary productivity (NPP): overview and key results , 1999 .

[33]  J. Wilmshurst,et al.  A Holocene record of climate, vegetation change and peat bog development, east Otago, South Island, New Zealand , 1999 .

[34]  A. Griffiths,et al.  Fire regimes and biodiversity in the wet-dry tropical savanna landscape of northern Australia , 1999 .

[35]  Jose M. Cardoso Pereira,et al.  An assessment of vegetation fire in Africa (1981–1991): Burned areas, burned biomass, and atmospheric emissions , 1999 .

[36]  McCulloch,et al.  Pleistocene extinction of genyornis newtoni: human impact on australian megafauna , 1999, Science.

[37]  R. Berner,et al.  Atmospheric oxygen over Phanerozoic time. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[38]  T. Jessup,et al.  Indonesia's fires and haze : the cost of catastrophe , 1999 .

[39]  Richard W. Wrangham,et al.  The Raw and the Stolen , 1999, Current Anthropology.

[40]  D. Nepstad,et al.  Positive feedbacks in the fire dynamic of closed canopy tropical forests , 1999, Science.

[41]  A. Kershaw Australian Rainforests: Islands of Green in a Land of Fire , 2000 .

[42]  David M. J. S. Bowman,et al.  Australian Rainforests: Islands of Green in a Land of Fire , 2000 .

[43]  M. Ohlson,et al.  Interpretation of the charcoal record in forest soils: forest fires and their production and deposition of macroscopic charcoal , 2000 .

[44]  G. Mazhitova Pyrogenic dynamics of permafrost-affected soils in the Kolyma Upland. , 2000 .

[45]  M. Verstraete,et al.  Biomass burning and its inter-relationships with the climate system , 2000 .

[46]  James K. Brown,et al.  Wildland fire in ecosystems: effects of fire on flora , 2000 .

[47]  G. Carmichael,et al.  Impacts of biomass burning on tropospheric CO, NOx, and O3 , 2000 .

[48]  J. Cihlar,et al.  Hotspot and NDVI Differencing Synergy (HANDS): A New Technique for Burned Area Mapping over Boreal Forest , 2000 .

[49]  Jing Chen,et al.  Net primary productivity following forest fire for Canadian ecoregions , 2000 .

[50]  W. Baker,et al.  A fire history of a subalpine forest in south‐eastern Wyoming, USA , 2000 .

[51]  E. Dwyer,et al.  Climate and Vegetation as Driving Factors in Global Fire Activity , 2000 .

[52]  J. Goldammer,et al.  Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes , 2000 .

[53]  Michael T. Coe,et al.  Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure , 2000 .

[54]  D. Fuller Satellite remote sensing of biomass burning with optical and thermal sensors , 2000 .

[55]  A. Scott The Pre-Quaternary history of fire , 2000 .

[56]  Timothy M. Lenton,et al.  The role of land plants, phosphorus weathering and fire in the rise and regulation of atmospheric oxygen , 2001 .

[57]  A. Granström Fire Management for Biodiversity in the European Boreal Forest , 2001 .

[58]  Thomas Kitzberger,et al.  Inter-hemispheric synchrony of forest fires and the El Niño-Southern Oscillation , 2001 .

[59]  C. Tucker,et al.  A large carbon sink in the woody biomass of Northern forests , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[60]  J. Agee,et al.  SPATIAL CONTROLS OF HISTORICAL FIRE REGIMES: A MULTISCALE EXAMPLE FROM THE INTERIOR WEST, USA , 2001 .

[61]  David D. Ackerly,et al.  Flammability and serotiny as strategies: correlated evolution in pines , 2001 .

[62]  P. Richard,et al.  Future fire in Canada's boreal forest: paleoecology results and general circulation model--regional climate model simulations , 2001 .

[63]  S. Haberle,et al.  Correlations Among Charcoal Records of Fires from the Past 16,000 Years in Indonesia, Papua New Guinea, and Central and South America , 2001, Quaternary Research.

[64]  K. Hirsch,et al.  Direct carbon emissions from Canadian forest fires, 1959-1999 , 2001 .

[65]  M. Andreae,et al.  Emission of trace gases and aerosols from biomass burning , 2001 .

[66]  David Tilman,et al.  Human-caused environmental change: Impacts on plant diversity and evolution , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[67]  C. Allen,et al.  ECOLOGICAL RESTORATION OF SOUTHWESTERN PONDEROSA PINE ECOSYSTEMS: A BROAD PERSPECTIVE , 2002 .

[68]  O. Bar‐Yosef The Upper Paleolithic Revolution , 2002 .

[69]  Benjamin Kerr,et al.  Genetic niche‐hiking: an alternative explanation for the evolution of flammability , 2002 .

[70]  S. Platek,et al.  The fireside hypothesis: was there differential selection to tolerate air pollution during human evolution? , 2002, Medical hypotheses.

[71]  S. Sherwood A Microphysical Connection Among Biomass Burning, Cumulus Clouds, and Stratospheric Moisture , 2002, Science.

[72]  S. Page,et al.  The amount of carbon released from peat and forest fires in Indonesia during 1997 , 2002, Nature.

[73]  Donatella Guzzi,et al.  Infrared detection of active fires and burnt areas: theory and observations , 2002 .

[74]  M. Bird,et al.  A revised high-resolution oxygen-isotope chronology for ODP-668B: implications for Quaternary biomass burning in Africa , 2002 .

[75]  P. Bartlein,et al.  The anatomy of a climatic oscillation: vegetation change in eastern North America during the Younger Dryas chronozone , 2002 .

[76]  S. Sitch,et al.  Simulating fire regimes in human‐dominated ecosystems: Iberian Peninsula case study , 2002 .

[77]  E. Feil,et al.  Climate Effects of Black Carbon Aerosols in China and India , 2002 .

[78]  S. Solberg,et al.  Atmospheric Chemistry and Physics , 2002 .

[79]  E. Kasischke,et al.  Emissions of carbon dioxide, carbon monoxide, and methane from boreal forest fires in 1998 , 2002 .

[80]  K. Hirsch,et al.  Large forest fires in Canada, 1959–1997 , 2002 .

[81]  M. Hulme,et al.  A high-resolution data set of surface climate over global land areas , 2002 .

[82]  M. Cochrane Spreading like Wildfire: Tropical forest fires in Latin America and the Caribbean , 2002 .

[83]  Thomas F. Eck,et al.  Observed reductions of total solar irradiance by biomass‐burning aerosols in the Brazilian Amazon and Zambian Savanna , 2002 .

[84]  K. Ryan Dynamic interactions between forest structure and fire behavior in boreal ecosystems , 2002 .

[85]  S. Nilsson,et al.  Boreal forest fires in Siberia in 1998: Estimation of area burned and emissions of pollutants by advanced very high resolution radiometer satellite data , 2002 .

[86]  R. Francey,et al.  Interannual growth rate variations of atmospheric CO2 and its δ13C, H2, CH4, and CO between 1992 and 1999 linked to biomass burning , 2002 .

[87]  G. Cary Importance of a changing climate for fire regimes in Australia. , 2002 .

[88]  K. Brown,et al.  Origin, development, and dynamics of coastal temperate conifer rainforests of southern Vancouver Island, Canada , 2002 .

[89]  K. Gajewski,et al.  Holocene biomass burning and global dynamics of the carbon cycle. , 2002, Chemosphere.

[90]  J. Pereira Remote sensing of burned areas in tropical savannas , 2003 .

[91]  Ana C. L. Sá,et al.  An estimate of the area burned in southern Africa during the 2000 dry season using SPOT-VEGETATION satellite data , 2003 .

[92]  J. Randerson,et al.  The use of ATSR active fire counts for estimating relative patterns of biomass burning – a study from the boreal forest region , 2003 .

[93]  D. Hallett,et al.  A 1000-year record of forest fire, drought and lake-level change in southeastern British Columbia, Canada , 2003 .

[94]  G. Hurtt,et al.  Projecting future fire activity in Amazonia , 2003 .

[95]  Scott D. Miller,et al.  Effect of stand age on whole ecosystem CO2 exchange in the Canadian boreal forest , 2003 .

[96]  Ignazio Gallo,et al.  Mapping burned surfaces in Sub-Saharan Africa based on multi-temporal neural classification , 2003 .

[97]  S. Pyne,et al.  Fire: A Brief History , 2001 .

[98]  M. Wooster,et al.  Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products. , 2003 .

[99]  Heiko Balzter,et al.  Forest fire scar detection in the boreal forest with multitemporal SPOT-VEGETATION data , 2003, IEEE Trans. Geosci. Remote. Sens..

[100]  Paulo M. Fernandes,et al.  A review of prescribed burning effectiveness in fire hazard reduction , 2003 .

[101]  Jennifer M. Robinson,et al.  PHANEROZOIC ATMOSPHERIC OXYGEN , 2003 .

[102]  L. Tacconi Fires in Indonesia: causes, costs and policy implications , 2003 .

[103]  Michael D. Dettinger,et al.  CLIMATE AND WILDFIRE IN THE WESTERN UNITED STATES , 2003 .

[104]  M. Cochrane Fire science for rainforests , 2003, Nature.

[105]  I. C. Prentice,et al.  Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model , 2003 .

[106]  A. Weaver,et al.  Detecting the effect of climate change on Canadian forest fires , 2004 .

[107]  J. Hansen,et al.  Soot climate forcing via snow and ice albedos. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[108]  D. Edwards,et al.  Charcoal in the Silurian as evidence for the earliest wildfire , 2004 .

[109]  T. Tomich,et al.  Environmental services and land use change in Southeast Asia: from recognition to regulation or reward? , 2004 .

[110]  M. Wooster,et al.  Boreal forest fires burn less intensely in Russia than in North America , 2004 .

[111]  D. L. Lynch What Do Forest Fires Really Cost , 2004 .

[112]  J. Dodson,et al.  A fine‐resolution Pliocene pollen and charcoal record from Yallalie, south‐western Australia , 2004 .

[113]  Eric S. Kasischke,et al.  A Quantitative Assessment of the 1998 Carbon Monoxide Emission Anomaly in the Northern Hemisphere Based on Total Column and Surface Concentration Measurements , 2004 .

[114]  J. Pereira,et al.  Vegetation burning in the year 2000: Global burned area estimates from SPOT VEGETATION data , 2004 .

[115]  M. Andreae,et al.  Smoking Rain Clouds over the Amazon , 2004, Science.

[116]  D. Streets,et al.  A technology‐based global inventory of black and organic carbon emissions from combustion , 2004 .

[117]  M. Floyd,et al.  CLIMATIC AND HUMAN INFLUENCES ON FIRE REGIMES OF THE SOUTHERN SAN JUAN MOUNTAINS, COLORADO, USA , 2004 .

[118]  Kwon-Ho Lee,et al.  Impact of the smoke aerosol from Russian forest fires on the atmospheric environment over Korea during May 2003 , 2004 .

[119]  D. A N I E L N E P S T A,et al.  Amazon drought and its implications for forest flammability and tree growth : a basin-wide analysis , 2004 .

[120]  Jon E. Keeley,et al.  PLANT FUNCTIONAL TRAITS IN RELATION TO FIRE IN CROWN-FIRE ECOSYSTEMS , 2004 .

[121]  Christopher A. Wood,et al.  Wildfire Policy and Public Lands: Integrating Scientific Understanding with Social Concerns across Landscapes , 2004 .

[122]  Jeremy Russell-Smith,et al.  Viewpoint: Assessing the carbon sequestration potential of mesic savannas in the Northern Territory, Australia: approaches, uncertainties and potential impacts of fire. , 2004, Functional plant biology : FPB.

[123]  L. Hutley,et al.  Savanna fires and their impact on net ecosystem productivity in North Australia , 2004 .

[124]  Elisabetta Binaghi,et al.  A Global Inventory of Burned Areas at 1 Km Resolution for the Year 2000 Derived from Spot Vegetation Data , 2004 .

[125]  M. McGlone,et al.  History of vegetation and habitat change in the Austral-Asian region , 2004 .

[126]  J. Randerson,et al.  Continental-Scale Partitioning of Fire Emissions During the 1997 to 2001 El Niño/La Niña Period , 2003, Science.

[127]  AYHAN DEMIRBAS,et al.  The Importance of Biomass , 2004 .

[128]  M. M. Moore,et al.  Mixed-severity fire regime in a high-elevation forest of Grand Canyon, Arizona, USA , 2004, Landscape Ecology.

[129]  Susan Page,et al.  A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics , 2004 .

[130]  E. Kasischke,et al.  AVHRR-based mapping of fires in Russia: New products for fire management and carbon cycle studies , 2004 .

[131]  J. Wilson,et al.  Human-mediated vegetation switches as processes in landscape ecology , 1995, Landscape Ecology.

[132]  Christopher B. Field,et al.  The global carbon cycle: integrating humans, climate and the natural world. , 2004 .

[133]  J. Stevenson,et al.  A Comparison of late Quaternary Forest Changes in New Caledonia and Northeastern Australia , 2005, Quaternary Research.

[134]  J. Randerson,et al.  Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: An annual perspective , 2005 .

[135]  A. Gill,et al.  Landscape fires as social disasters: An overview of ‘the bushfire problem’ , 2005 .

[136]  F. Woodward,et al.  The global distribution of ecosystems in a world without fire. , 2004, The New phytologist.

[137]  K. P. Koutsenogii,et al.  Particulate emissions from fires in central Siberian Scots pine forests , 2005 .

[138]  K. Ranson,et al.  The Spatiotemporal Pattern of Fires in Northern Taiga Larch Forests of Central Siberia , 2005, Russian Journal of Ecology.

[139]  P. Whitfield,et al.  Potential forest fire danger over Northern Eurasia: Changes during the 20th century , 2005 .

[140]  A. Smith,et al.  Remote classification of head and backfire types from MODIS fire radiative power and smoke plume observations , 2005 .

[141]  J. Hansen,et al.  Distant origins of Arctic black carbon: A Goddard Institute for Space Studies ModelE experiment , 2005 .

[142]  Mimicking Nature's Fire: Restoring Fire-Prone Forests In The West , 2005 .

[143]  M. Andreae,et al.  Airborne measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia , 2005 .

[144]  Shamil Maksyutov,et al.  Role of biomass burning and climate anomalies for land‐atmosphere carbon fluxes based on inverse modeling of atmospheric CO2 , 2005, Global Biogeochemical Cycles.

[145]  A. Belward,et al.  Characterizing interannual variations in global fire calendar using data from Earth observing satellites , 2005 .

[146]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[147]  E. Schulze,et al.  Effects of increasing fire frequency on black carbon and organic matter in Podzols of Siberian Scots pine forests , 2005 .

[148]  J. Dodson,et al.  Two fine‐resolution Pliocene charcoal records and their bearing on pre‐human fire frequency in south‐western Australia , 2005 .

[149]  M. Flannigan,et al.  Future Area Burned in Canada , 2005 .

[150]  I. C. Prentice,et al.  A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system , 2005 .

[151]  Yongqiang Liu Enhancement of the 1988 northern U.S. drought due to wildfires , 2005 .

[152]  J. Penner,et al.  Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870–2000 , 2005 .

[153]  J. Randerson,et al.  Global Estimation of Burned Area Using Modis Active Fire Observations , 2022 .

[154]  P. Novelli,et al.  Influences of boreal fire emissions on Northern Hemisphere atmospheric carbon and carbon monoxide , 2005 .

[155]  Jon E. Keeley,et al.  Fire and the Miocene expansion of C4 grasslands , 2005 .

[156]  R. Neilson,et al.  Simulating the response of natural ecosystems and their fire regimes to climatic variability in Alaska , 2005 .

[157]  G. Miller,et al.  Ecosystem Collapse in Pleistocene Australia and a Human Role in Megafaunal Extinction , 2005, Science.

[158]  D. Roy,et al.  Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data , 2005 .

[159]  Akihiko Ito,et al.  Modelling of carbon cycle and fire regime in an east Siberian larch forest , 2005 .

[160]  D. Etheridge,et al.  Unexpected Changes to the Global Methane Budget over the Past 2000 Years , 2005, Science.

[161]  Thomas R. Walter,et al.  Feedback processes between magmatic events and flank movement at Mount Etna (Italy) during the 2002-2003 eruption , 2005 .

[162]  C. Field,et al.  Fire history and the global carbon budget: a 1°× 1° fire history reconstruction for the 20th century , 2005 .

[163]  C. Hewitt,et al.  Modeling glacial‐interglacial changes in global fire regimes and trace gas emissions , 2005 .

[164]  J. Lamarque,et al.  Quantifying CO emissions from the 2004 Alaskan wildfires using MOPITT CO data , 2005 .

[165]  N. Drake,et al.  FIRE IN AFRICAN SAVANNA: TESTING THE IMPACT OF INCOMPLETE COMBUSTION ON PYROGENIC EMISSIONS ESTIMATES , 2005 .

[166]  W. Bond,et al.  Fire as a global 'herbivore': the ecology and evolution of flammable ecosystems. , 2005, Trends in ecology & evolution.

[167]  C. Justice,et al.  Global fire activity from two years of MODIS data , 2005 .

[168]  J. Pereira,et al.  Screening the ESA ATSR-2 World Fire Atlas (1997 2002) , 2005 .

[169]  Vivek K. Arora,et al.  Fire as an interactive component of dynamic vegetation models , 2005 .

[170]  Christiane Schmullius,et al.  Impact of the Arctic Oscillation pattern on interannual forest fire variability in Central Siberia , 2005 .

[171]  Kelly Chance,et al.  Global partitioning of NOx sources using satellite observations: relative roles of fossil fuel combustion, biomass burning and soil emissions. , 2005, Faraday discussions.

[172]  R. Wein,et al.  Biotic and abiotic regulation of lightning fire initiation in the mixedwood boreal forest. , 2006, Ecology.

[173]  A. Scott,et al.  The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[174]  A. Shvidenko,et al.  The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: A process-based analysis , 2006 .

[175]  G. Inoue,et al.  Temporal variations in soil–atmosphere methane exchange after fire in a peat swamp forest in West Siberia , 2006 .

[176]  David M. Rider,et al.  Nadir measurements of carbon monoxide distributions by the Tropospheric Emission Spectrometer instrument onboard the Aura Spacecraft: Overview of analysis approach and examples of initial results , 2006 .

[177]  V. Ramaswamy,et al.  On the sensitivity of radiative forcing from biomass burning aerosols and ozone to emission location , 2007 .

[178]  C. Taylor,et al.  A statistical model linking Siberian forest fire scars with early summer rainfall anomalies , 2006 .

[179]  K. Lertzman,et al.  Weak climatic control of stand-scale fire history during the late holocene. , 2006, Ecology.

[180]  J. Paruelo,et al.  Continental fire density patterns in South America , 2006 .

[181]  Marco Bindi,et al.  Potential impact of climate change on fire risk in the Mediterranean area , 2006 .

[182]  Philip J. Rasch,et al.  Present-day climate forcing and response from black carbon in snow , 2006 .

[183]  Atul K. Jain,et al.  Estimates of global biomass burning emissions for reactive greenhouse gases (CO, NMHCs, and NOx) and CO2 , 2006 .

[184]  S. Lavorel,et al.  Vulnerability of land systems to fire: Interactions among humans, climate, the atmosphere, and ecosystems , 2006 .

[185]  P. Martin,et al.  Diet, Energy, and Global Warming , 2006 .

[186]  P. Bartlein,et al.  Fire and vegetation history during the last 3800 years in northwestern Montana , 2006 .

[187]  W. Knorr,et al.  A climate-change risk analysis for world ecosystems , 2006, Proceedings of the National Academy of Sciences.

[188]  Christopher B. Field,et al.  Global carbon emissions from biomass burning in the 20th century , 2006 .

[189]  S. Running Is Global Warming Causing More, Larger Wildfires? , 2006, Science.

[190]  J. Tison,et al.  One-to-one coupling of glacial climate variability in Greenland and Antarctica. , 2006 .

[191]  Tami C. Bond,et al.  Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom , 2006 .

[192]  T. Swetnam,et al.  Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity , 2006, Science.

[193]  J. Randerson,et al.  Interannual variability in global biomass burning emissions from 1997 to 2004 , 2006 .

[194]  J. Randerson,et al.  The Impact of Boreal Forest Fire on Climate Warming , 2006, Science.

[195]  D. Beerling,et al.  The origin of the savanna biome , 2006 .

[196]  A. Taylor,et al.  Fire‐climate interactions in forests of the American Pacific coast , 2006 .

[197]  M. Silman,et al.  Holocene fire and occupation in Amazonia: records from two lake districts , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[198]  M. Girardin Interannual to decadal changes in area burned in Canada from 1781 to 1982 and the relationship to Northern Hemisphere land temperatures , 2007 .

[199]  Avi Gopher,et al.  Evidence for habitual use of fire at the end of the Lower Paleolithic: site-formation processes at Qesem Cave, Israel. , 2007, Journal of human evolution.

[200]  W. Romme,et al.  Expansion of the US wildland–urban interface , 2007 .

[201]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[202]  B. Law,et al.  Pyrogenic carbon emission from a large wildfire in Oregon, United States , 2007 .

[203]  A. Gill,et al.  Bushfires 'down under': patterns and implications of contemporary Australian landscape burning , 2007 .

[204]  W. P. Ball,et al.  Comparison of quantification methods to measure fire‐derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere , 2007 .

[205]  S. Ustin,et al.  Global spatial patterns and temporal trends of burned area between 1981 and 2000 using NOAA‐NASA Pathfinder , 2007 .

[206]  M. Kaufmann,et al.  Fire, ecosystems & people: threats and strategies for global biodiversity conservation , 2007 .

[207]  T. Cerling,et al.  Timing of C4 grass expansion across sub-Saharan Africa. , 2007, Journal of human evolution.

[208]  M. Chin,et al.  Sensitivity of global CO simulations to uncertainties in biomass burning sources , 2007 .

[209]  P. Fernandes,et al.  Potential for CO2 emissions mitigation in Europe through prescribed burning in the context of the Kyoto Protocol , 2007 .

[210]  A. Pitman,et al.  The significance of large-scale land cover change on the Australian palaeomonsoon , 2007 .

[211]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[212]  Heiko Balzter,et al.  Coupling of Vegetation Growing Season Anomalies and Fire Activity with Hemispheric and Regional-Scale Climate Patterns in Central and East Siberia , 2007 .

[213]  C. Lafon,et al.  Spatial Patterns of Fire Occurrence in the Central Appalachian Mountains and Implications for wildland Fire Management , 2007 .

[214]  S. Pyne Problems, paradoxes, paradigms: triangulating fire research , 2007 .

[215]  Geoffrey H. Donovan,et al.  Be careful what you wish for: the legacy of Smokey Bear , 2007 .

[216]  C. Wiedinmyer,et al.  Estimates of CO2 from fires in the United States: implications for carbon management , 2007, Carbon balance and management.

[217]  D. Nychka,et al.  Spatial patterns of probabilistic temperature change projections from a multivariate Bayesian analysis , 2007 .

[218]  M. Silman,et al.  A regional study of Holocene climate change and human occupation in Peruvian Amazonia , 2007 .

[219]  T. Swetnam,et al.  Contingent Pacific–Atlantic Ocean influence on multicentury wildfire synchrony over western North America , 2007, Proceedings of the National Academy of Sciences.

[220]  A. Ito,et al.  Seasonal and interannual variations in CO and BC emissions from open biomass burning in Southern Africa during 1998–2005 , 2007 .

[221]  A. Scott,et al.  Episodic fire, runoff and deposition at the Palaeocene–Eocene boundary , 2007, Journal of the Geological Society.

[222]  G. J. Collatz,et al.  Global Fire Emissions Database, Version 2.1 , 2007 .

[223]  S. Pacala,et al.  Drivers of fire in the boreal forests: Data constrained design of a prognostic model of burned area for use in dynamic global vegetation models , 2007 .

[224]  Jan W. van Wagtendonk,et al.  The History and Evolution of Wildland Fire Use , 2007 .

[225]  Philippe Ciais,et al.  Modeling terrestrial 13C cycling: Climate, land use and fire , 2008 .

[226]  J. Randerson,et al.  Climate controls on the variability of fires in the tropics and subtropics , 2008 .

[227]  D. Roy,et al.  The collection 5 MODIS burned area product — Global evaluation by comparison with the MODIS active fire product , 2008 .

[228]  J. Randerson,et al.  Agricultural intensification increases deforestation fire activity in Amazonia , 2008 .

[229]  P. Bartlein,et al.  A 14,300-year-long record of fire–vegetation–climate linkages at Battle Ground Lake, southwestern Washington , 2008, Quaternary Research.

[230]  R. L. Hutto The ecological importance of severe wildfires: some like it hot. , 2008, Ecological applications : a publication of the Ecological Society of America.

[231]  G. Bonan Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests , 2008, Science.

[232]  L. Remer,et al.  Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy , 2008 .

[233]  R. Neilson,et al.  Response of vegetation distribution, ecosystem productivity, and fire to climate change scenarios for California , 2008 .

[234]  I. Drobyshev,et al.  Pre- and post-European settlement fire history of red pine dominated forest ecosystems of Seney National Wildlife Refuge, Upper Michigan , 2008 .

[235]  Werner A. Kurz,et al.  Risk of natural disturbances makes future contribution of Canada's forests to the global carbon cycle highly uncertain , 2008, Proceedings of the National Academy of Sciences.

[236]  M. Mudelsee,et al.  Past and future changes in Canadian boreal wildfire activity. , 2008, Ecological applications : a publication of the Ecological Society of America.

[237]  S. Houweling,et al.  Early anthropogenic CH4 emissions and the variation of CH4 and 13CH4 over the last millennium , 2008 .

[238]  P. Formenti,et al.  Evidence for large-scale transport of biomass burning aerosols from sunphotometry at a remote South African site , 2008 .

[239]  J. Pereira,et al.  Global wildland fire emissions from 1960 to 2000 , 2008 .

[240]  J. Randerson,et al.  Climate regulation of fire emissions and deforestation in equatorial Asia , 2008, Proceedings of the National Academy of Sciences.

[241]  J. Schmitt,et al.  Changing boreal methane sources and constant biomass burning during the last termination , 2008, Nature.

[242]  V. Ramanathan,et al.  Global and regional climate changes due to black carbon , 2008 .

[243]  M. Goulden,et al.  Has fire suppression increased the amount of carbon stored in western U.S. forests? , 2008 .

[244]  C. Justice,et al.  Global characterization of fire activity: toward defining fire regimes from Earth observation data , 2008 .

[245]  J. Grégoire,et al.  A new, global, multi‐annual (2000–2007) burnt area product at 1 km resolution , 2008 .

[246]  C. Belcher,et al.  Limits for Combustion in Low O2 Redefine Paleoatmospheric Predictions for the Mesozoic , 2008, Science.

[247]  Scott L. Stephens,et al.  Fire and sustainability: considerations for California’s altered future climate , 2008 .

[248]  J. Lynch,et al.  Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data , 2008 .

[249]  J. Skjemstad,et al.  Australian climate–carbon cycle feedback reduced by soil black carbon , 2008 .

[250]  Richard J. Williams,et al.  Spatio‐temporal trends in tree cover of a tropical mesic savanna are driven by landscape disturbance , 2008 .

[251]  George W. Koch,et al.  Carbon protection and fire risk reduction: toward a full accounting of forest carbon offsets , 2008 .

[252]  A. Solomon,et al.  Temporal and spatial structure in a daily wildfire-start data set from the western United States (1986–96) , 2008 .

[253]  Flannigan,et al.  BIOTIC AND ABIOTIC REGULATION OF LIGHTNING FIRE INITIATION IN THE MIXED WOOD BOREAL FOREST , 2008 .

[254]  J. Randerson,et al.  Fire‐related carbon emissions from land use transitions in southern Amazonia , 2008 .

[255]  William J. Bond,et al.  What Limits Trees in C4 Grasslands and Savannas , 2008 .

[256]  H. Owen,et al.  New Phytol , 2008 .

[257]  S. Sitch,et al.  The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model , 2008 .

[258]  F. Joos,et al.  Climate and human influences on global biomass burning over the past two millennia , 2008 .

[259]  J. Wilmshurst,et al.  Rapid deforestation of South Island, New Zealand, by early Polynesian fires , 2009 .

[260]  B. Simoneit,et al.  WIDESPREAD UPPER TRIASSIC TO LOWER JURASSIC WILDFIRE RECORDS FROM POLAND: EVIDENCE FROM CHARCOAL AND PYROLYTIC POLYCYCLIC AROMATIC HYDROCARBONS , 2009 .

[261]  T. Wiegand,et al.  Fire-mediated interactions between shrubs in a South American temperate savannah , 2009 .

[262]  D. Roy,et al.  What limits fire? An examination of drivers of burnt area in Southern Africa , 2009 .

[263]  M. Moritz,et al.  Fire regimes of China: inference from statistical comparison with the United States , 2009 .

[264]  Samuel S. P. Shen,et al.  Human amplification of drought-induced biomass burning in Indonesia since 1960 , 2009 .

[265]  William Ludtka Be careful what you wish for. , 2009, RN.

[266]  Drew T. Shindell,et al.  Climate response to regional radiative forcing during the twentieth century , 2009 .

[267]  Drew T. Shindell,et al.  Fire parameterization on a global scale , 2009 .

[268]  A. Pitman,et al.  Total cost of fire in Australia , 2009 .

[269]  B. Mourier,et al.  Spatial Variability of Fire History in Subalpine Forests: From Natural to Cultural Regimes , 2009 .

[270]  Susan I. Stewart,et al.  Conservation Threats Due to Human‐Caused Increases in Fire Frequency in Mediterranean‐Climate Ecosystems , 2009, Conservation biology : the journal of the Society for Conservation Biology.

[271]  S. Goetz,et al.  Importance of biomass in the global carbon cycle , 2009 .

[272]  S. Frolking,et al.  Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure , 2009 .

[273]  J. Keeley,et al.  A Burning Story: The Role of Fire in the History of Life , 2009 .

[274]  Mark E Harmon,et al.  Forest fuel reduction alters fire severity and long-term carbon storage in three Pacific Northwest ecosystems. , 2009, Ecological applications : a publication of the Ecological Society of America.

[275]  M. Moritz,et al.  Environmental controls on the distribution of wildfire at multiple spatial scales , 2009 .

[276]  Mike D. Flannigan,et al.  Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century , 2009 .

[277]  Michael McGuire,et al.  Wildland fire mitigation networks in the western United States. , 2009, Disasters.

[278]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[279]  P. Bartlein,et al.  Rapid responses of the prairie-forest ecotone to early Holocene aridity in mid-continental North America , 2009 .

[280]  Alan G. Jones,et al.  Lithospheric geometry of the Wopmay orogen from a Slave craton to Bear Province magnetotelluric transect , 2009 .

[281]  P. Whitehead,et al.  Culture, ecology and economy of fire management in North Australian Savannas : rekindling the Wurrk tradition , 2009 .

[282]  A. Brunelle,et al.  Wildfire responses to abrupt climate change in North America , 2009, Proceedings of the National Academy of Sciences.

[283]  Juli G. Pausas,et al.  Fire-related traits for plant species of the Mediterranean Basin , 2009 .

[284]  M. Cochrane,et al.  Climate change, human land use and future fires in the Amazon , 2009 .

[285]  K. Dixon,et al.  Altered vegetation structure and composition linked to fire frequency and plant invasion in a biodiverse woodland , 2009 .

[286]  E. Steig,et al.  Anthropogenic Impacts on Nitrogen Isotopes of Ice-Core Nitrate , 2009, Science.

[287]  M. Conedera,et al.  Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation , 2009 .

[288]  M. Krawchuk,et al.  Implications of changing climate for global wildland fire , 2009 .

[289]  E. Vermote,et al.  Estimating biomass consumed from fire using MODIS FRE , 2009 .

[290]  M. Moritz,et al.  Global Pyrogeography: the Current and Future Distribution of Wildfire , 2009, PloS one.

[291]  S. Harrison,et al.  Fire regimes during the Last Glacial , 2009 .

[292]  Peter E. Thornton,et al.  Fire dynamics during the 20th century simulated by the Community Land Model , 2010 .

[293]  Sandy P. Harrison,et al.  Fire history and the Global Charcoal Database: A new tool for hypothesis testing and data exploration , 2010 .

[294]  S. Archibald Culture, Ecology and Economy of Fire Management in North Australian Savannas: Rekindling the Wurrk Tradition , 2011 .

[295]  S S I T C H,et al.  Evaluation of Ecosystem Dynamics, Plant Geography and Terrestrial Carbon Cycling in the Lpj Dynamic Global Vegetation Model , 2022 .