A toolkit for the development and application of parsimonious hydrological models.

A modelling toolkit is described which has been developed to produce parsimonious model structures with a high degree of parameter identifiability. This is necessary if sensible relationships between model parameters and catchment characteristics are to be established, for example for regionalization studies. The toolkit contains two major components. The first is a rainfall-runoff modeling system with a generic architecture of lumped, conceptual or metric-conceptual model elements, which allows alternative model structures to be rapidly constructed and tested. The second component is a Monte-Carlo analysis toolbox combining a number of analysis tools to investigate parameter identifiability, model behaviour and prediction uncertainty. Two example applications are presented. These illustrate the use of multiple objective functions to extract information from a single output time-series for analysis of parameter sensitivity and identifiability, and the trade-off between model complexity and identifiability.

[1]  A. Jakeman,et al.  How much complexity is warranted in a rainfall‐runoff model? , 1993 .

[2]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[3]  K. Beven,et al.  Shenandoah Watershed Study: Calibration of a Topography‐Based, Variable Contributing Area Hydrological Model to a Small Forested Catchment , 1985 .

[4]  L. Darrell Whitley,et al.  The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best , 1989, ICGA.

[5]  H. L. Penman THE DEPENDENCE OF TRANSPIRATION ON WEATHER AND SOIL CONDITIONS , 1950 .

[6]  K. Beven,et al.  Bayesian Estimation of Uncertainty in Runoff Prediction and the Value of Data: An Application of the GLUE Approach , 1996 .

[7]  W. Price Global optimization algorithms for a CAD workstation , 1987 .

[8]  George Kuczera,et al.  The quest for more powerful validation of conceptual catchment models , 1997 .

[9]  Karel J. Keesman,et al.  Uncertainty propagation and speculation in projective forecasts of environmental change - a lake eutrophication example. , 1991 .

[10]  P. R. Johnston,et al.  Parameter optimization for watershed models , 1976 .

[11]  Keith Beven,et al.  Changing ideas in hydrology — The case of physically-based models , 1989 .

[12]  R. J. Moore,et al.  Real-Time Flood Forecasting Systems: Perspectives and Prospects , 1999 .

[13]  G. Kuczera Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty , 1983 .

[14]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods , 2000 .

[15]  L. Wolpert Popper , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[16]  James C. I. Dooge,et al.  Looking for hydrologic laws , 1986 .

[17]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[18]  H. Akaike A new look at the statistical model identification , 1974 .

[19]  L. Brazil,et al.  Calibration Procedures Use with the National Weather Service River Forecast System , 1980 .

[20]  William H. Press,et al.  Numerical recipes in C (2nd ed.): the art of scientific computing , 1992 .

[21]  S. Uhlenbrook,et al.  Prediction uncertainty of conceptual rainfall-runoff models caused by problems in identifying model parameters and structure , 1999 .

[22]  H. Wheater,et al.  An investigation into the effect of spatial scale on the performance of a one-dimensional water balance model , 1997 .

[23]  Q. J. Wang The Genetic Algorithm and Its Application to Calibrating Conceptual Rainfall-Runoff Models , 1991 .

[24]  Tom G. Chapman,et al.  A comparison of algorithms for stream flow recession and baseflow separation , 1999 .

[25]  C. T. Haan,et al.  Multiobjective Parameter Estimation For Hydrologic Models - Weighting Of Errors , 1991 .

[26]  Anthony J. Jakeman,et al.  Performance of conceptual rainfall‐runoff models in low‐yielding ephemeral catchments , 1997 .

[27]  Robert C. Spear,et al.  Large simulation models: calibration, uniqueness and goodness of fit , 1997 .

[28]  Soroosh Sorooshian,et al.  Multi-objective global optimization for hydrologic models , 1998 .

[29]  W. Press,et al.  Numerical Recipes in C++: The Art of Scientific Computing (2nd edn)1 Numerical Recipes Example Book (C++) (2nd edn)2 Numerical Recipes Multi-Language Code CD ROM with LINUX or UNIX Single-Screen License Revised Version3 , 2003 .

[30]  George E. P. Box,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[31]  L. Bastidas,et al.  Parameter estimation for hydrometeorological models using multi-criteria methods , 1998 .

[32]  A. Jakeman,et al.  Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments , 1990 .

[33]  F. Naef,et al.  Can we model the rainfall-runoff process today? , 1981 .

[34]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[35]  B. Ambroise,et al.  Multicriterion Validation of a Semidistributed Conceptual Model of the Water Cycle in the Fecht Catchment (Vosges Massif, France) , 1995 .

[36]  V. T. Chow,et al.  General Hydrologic System Model , 1971 .

[37]  G. Hornberger,et al.  Approach to the preliminary analysis of environmental systems , 1981 .

[38]  K. Beven,et al.  Progress and directions in rainfall-runoff modelling , 1993 .

[39]  J. Refsgaard,et al.  Operational Validation and Intercomparison of Different Types of Hydrological Models , 1996 .

[40]  農業土木学会応用水文研究部会,et al.  応用水文 = Applied hydrology , 1991 .

[41]  Jan Seibert,et al.  Conceptual Runoff Models -- Fiction or Representation of Reality , 1999 .

[42]  Nong Shang,et al.  Parameter uncertainty and interaction in complex environmental models , 1994 .

[43]  A. Jakeman,et al.  Development of a simple, catchment-scale, rainfall-evapotranspiration-runoff model , 1998 .

[44]  P. Young,et al.  Simplicity out of complexity in environmental modelling: Occam's razor revisited. , 1996 .

[45]  R. Spear Eutrophication in peel inlet—II. Identification of critical uncertainties via generalized sensitivity analysis , 1980 .

[46]  Jean-Pierre Villeneuve,et al.  Uncertainty assessment and analysis of the calibrated parameter values of an urban storm water quality model , 1998 .

[47]  Richard P. Hooper,et al.  A multisignal automatic calibration methodology for hydrochemical models: A case study of the Birkenes Model , 1988 .

[48]  Soroosh Sorooshian,et al.  The relationship between data and the precision of parameter estimates of hydrologic models , 1985 .

[49]  M. B. Beck,et al.  Water quality modeling: A review of the analysis of uncertainty , 1987 .

[50]  Anthony J. Jakeman,et al.  A systematic approach to modelling the dynamic linkage of climate, physical catchment descriptors and hydrologic response components , 1992 .

[51]  George Kuczera,et al.  Assessment of hydrologic parameter uncertainty and the worth of multiresponse data , 1998 .

[52]  M. B. Beck,et al.  The Identifiability of Conceptual Hydrochemical Models , 1990 .

[53]  George Kuczera,et al.  Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm , 1998 .

[54]  R. Moore,et al.  A distribution function approach to rainfall runoff modeling , 1981 .

[55]  Ben Chie Yen Criteria for Evaluation of Watershed Models , 1995 .

[56]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[57]  Renzo Rosso,et al.  Statistics, Probability and Reliability for Civil and Environmental Engineers , 1997 .

[58]  Anthony J. Jakeman,et al.  From data and theory to environmental model: The case of rainfall runoff , 1994 .

[59]  S. Sorooshian,et al.  Shuffled complex evolution approach for effective and efficient global minimization , 1993 .

[60]  Peter C. Young,et al.  Recursive Estimation and Time-Series Analysis: An Introduction , 1984 .

[61]  W. J. Shuttleworth,et al.  Parameter estimation of a land surface scheme using multicriteria methods , 1999 .

[62]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information , 1998 .

[63]  S. Sorooshian,et al.  Evaluation of Maximum Likelihood Parameter estimation techniques for conceptual rainfall‐runoff models: Influence of calibration data variability and length on model credibility , 1983 .

[64]  Sarah M. Dunn Imposing constraints on parameter values of a conceptual hydrological model using baseflow response , 1999 .

[65]  J. R. Blackie,et al.  Lumped catchment models , 1985 .

[66]  S. Mous,et al.  Identification of the movement of water in unsaturated soils: the problem of identifiability of the model , 1993 .

[67]  Soroosh Sorooshian,et al.  Optimal use of the SCE-UA global optimization method for calibrating watershed models , 1994 .

[68]  Richard Harding,et al.  An objective assessment of soil-moisture deficit models , 1983 .

[69]  S. Sorooshian,et al.  Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data , 1996 .

[70]  Peter C. Young,et al.  A systems model of stream flow and water quality in the bedford-ouse river—1. stream flow modelling , 1979 .

[71]  H. Wittenberg Baseflow recession and recharge as nonlinear storage processes , 1999 .

[72]  Peter C. Young,et al.  Parallel Processes in Hydrology and Water Quality: A Unified Time‐Series Approach , 1992 .

[73]  S. Howarth,et al.  Relationships between dynamic response characteristics and physical descriptors of catchments in England and Wales , 1998 .

[74]  M. J. Lees,et al.  Data-based mechanistic modelling and forecasting of hydrological systems , 2000 .

[75]  M. B. Beck,et al.  The identification of conceptual hydrological models for surface water acidification , 1986 .

[76]  S. Sorooshian,et al.  Stochastic parameter estimation procedures for hydrologie rainfall‐runoff models: Correlated and heteroscedastic error cases , 1980 .