Convergent approaches toward the study of multisensory perception

Classical analytical approaches for examining multisensory processing in individual neurons have relied heavily on changes in mean firing rate to assess the presence and magnitude of multisensory interaction. However, neurophysiological studies within individual sensory systems have illustrated that important sensory and perceptual information is encoded in forms that go beyond these traditional spike-based measures. Here we review analytical tools as they are used within individual sensory systems (auditory, somatosensory, and visual) to advance our understanding of how sensory cues are effectively integrated across modalities (e.g., audiovisual cues facilitating speech processing). Specifically, we discuss how methods used to assess response variability (Fano factor, or FF), local field potentials (LFPs), current source density (CSD), oscillatory coherence, spike synchrony, and receiver operating characteristics (ROC) represent particularly promising tools for understanding the neural encoding of multisensory stimulus features. The utility of each approach and how it might optimally be applied toward understanding multisensory processing is placed within the context of exciting new data that is just beginning to be generated. Finally, we address how underlying encoding mechanisms might shape—and be tested alongside with—the known behavioral and perceptual benefits that accompany multisensory processing.

[1]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[2]  J. Palva,et al.  New vistas for α-frequency band oscillations , 2007, Trends in Neurosciences.

[3]  John J. Foxe,et al.  The case for feedforward multisensory convergence during early cortical processing , 2005, Neuroreport.

[4]  M M Merzenich,et al.  Alterations in correlated activity parallel ICMS-induced representational plasticity. , 1993, Neuroreport.

[5]  Lawrence G. McDade,et al.  Behavioral Indices of Multisensory Integration: Orientation to Visual Cues is Affected by Auditory Stimuli , 1989, Journal of Cognitive Neuroscience.

[6]  R. Freeman,et al.  Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity , 2007, Nature Neuroscience.

[7]  J. Donoghue,et al.  Oscillations in local field potentials of the primate motor cortex during voluntary movement. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Christopher T. Lovelace,et al.  An irrelevant light enhances auditory detection in humans: a psychophysical analysis of multisensory integration in stimulus detection. , 2003, Brain research. Cognitive brain research.

[9]  Leslie P. Keniston,et al.  Subthreshold auditory inputs to extrastriate visual neurons are responsive to parametric changes in stimulus quality: Sensory-specific versus non-specific coding , 2008, Brain Research.

[10]  M. Wallace,et al.  Multisensory integration in the superior colliculus of the alert cat. , 1998, Journal of neurophysiology.

[11]  John J. Foxe,et al.  The timing and laminar profile of converging inputs to multisensory areas of the macaque neocortex. , 2002, Brain research. Cognitive brain research.

[12]  Paul L. Nunez,et al.  A Visual study of surface potentials and Laplacians due to distributed neocortical sources: Computer simulations and evoked potentials , 2005, Brain Topography.

[13]  M. Steriade Impact of network activities on neuronal properties in corticothalamic systems. , 2001, Journal of neurophysiology.

[14]  T. Stanford,et al.  Evaluating the Operations Underlying Multisensory Integration in the Cat Superior Colliculus , 2005, The Journal of Neuroscience.

[15]  K. Alloway,et al.  Synchronization of local neural networks in the somatosensory cortex: A comparison of stationary and moving stimuli. , 1999, Journal of neurophysiology.

[16]  Michael N. Shadlen,et al.  Noise, neural codes and cortical organization , 1994, Current Opinion in Neurobiology.

[17]  John J. Foxe,et al.  Visuo-spatial neural response interactions in early cortical processing during a simple reaction time task: a high-density electrical mapping study , 2001, Neuropsychologia.

[18]  B. Stein,et al.  Spatial determinants of multisensory integration in cat superior colliculus neurons. , 1996, Journal of neurophysiology.

[19]  Alexander S. Ecker,et al.  Feature Selectivity of the Gamma-Band of the Local Field Potential in Primate Primary Visual Cortex , 2008, Front. Neurosci..

[20]  N. Logothetis,et al.  Local field potential reflects perceptual suppression in monkey visual cortex , 2006, Proceedings of the National Academy of Sciences.

[21]  M. Carandini Amplification of Trial-to-Trial Response Variability by Neurons in Visual Cortex , 2004, PLoS biology.

[22]  C. K. Peck,et al.  Spatial disparity affects visual-auditory interactions in human sensorimotor processing , 1998, Experimental Brain Research.

[23]  M HERSHENSON,et al.  Reaction time as a measure of intersensory facilitation. , 1962, Journal of experimental psychology.

[24]  R. Oostenveld,et al.  Theta and Gamma Oscillations Predict Encoding and Retrieval of Declarative Memory , 2006, The Journal of Neuroscience.

[25]  Andreas K. Engel,et al.  Oscillatory Synchronization in Large-Scale Cortical Networks Predicts Perception , 2011, Neuron.

[26]  N. Bolognini,et al.  Enhancement of visual perception by crossmodal visuo-auditory interaction , 2002, Experimental Brain Research.

[27]  Sidney S. Simon,et al.  Merging of the Senses , 2008, Front. Neurosci..

[28]  M. Frens,et al.  Spatial and temporal factors determine auditory-visual interactions in human saccadic eye movements , 1995, Perception & psychophysics.

[29]  Alexander S. Ecker,et al.  Comparing the Feature Selectivity of the Gamma-Band of the Local Field Potential and the Underlying Spiking Activity in Primate Visual Cortex , 2008, Frontiers in systems neuroscience.

[30]  G. DeAngelis,et al.  Neural correlates of multisensory cue integration in macaque MSTd , 2008, Nature Neuroscience.

[31]  C. Schroeder,et al.  The Gamma Oscillation: Master or Slave? , 2009, Brain Topography.

[32]  R. Shapley,et al.  Spatial Spread of the Local Field Potential and its Laminar Variation in Visual Cortex , 2009, The Journal of Neuroscience.

[33]  Daniel Gembris,et al.  Top-down attentional processing enhances auditory evoked gamma band activity , 2003, Neuroreport.

[34]  John J. Foxe,et al.  Multisensory auditory-somatosensory interactions in early cortical processing revealed by high-density electrical mapping. , 2000, Brain research. Cognitive brain research.

[35]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  B. Stein,et al.  Two Corticotectal Areas Facilitate Multisensory Orientation Behavior , 2002, Journal of Cognitive Neuroscience.

[37]  Ernst Niebur,et al.  Effect of Stimulus Intensity on the Spike–Local Field Potential Relationship in the Secondary Somatosensory Cortex , 2008, The Journal of Neuroscience.

[38]  C. Koch,et al.  Some reflections on visual awareness. , 1990, Cold Spring Harbor symposia on quantitative biology.

[39]  W. Singer,et al.  Oscillatory Neuronal Responses in the Visual Cortex of the Awake Macaque Monkey , 1992, The European journal of neuroscience.

[40]  E. Basar,et al.  Brain oscillations in perception and memory. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[41]  M. Ahissar,et al.  Encoding of sound-source location and movement: activity of single neurons and interactions between adjacent neurons in the monkey auditory cortex. , 1992, Journal of neurophysiology.

[42]  B. Stein,et al.  Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  Jason Wolfe,et al.  Sparse temporal coding of elementary tactile features during active whisker sensation , 2009, Nature Neuroscience.

[44]  Bijan Pesaran,et al.  Temporal structure in neuronal activity during working memory in macaque parietal cortex , 2000, Nature Neuroscience.

[45]  M. Wallace,et al.  Superior colliculus lesions preferentially disrupt multisensory orientation , 2004, Neuroscience.

[46]  R. Oostenveld,et al.  Tactile Spatial Attention Enhances Gamma-Band Activity in Somatosensory Cortex and Reduces Low-Frequency Activity in Parieto-Occipital Areas , 2006, The Journal of Neuroscience.

[47]  G. Knyazev Motivation, emotion, and their inhibitory control mirrored in brain oscillations , 2007, Neuroscience & Biobehavioral Reviews.

[48]  J. Pernier,et al.  Induced gamma-band activity during the delay of a visual short-term memory task in humans. , 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  Xiangmin Xu,et al.  Static and dynamic views of visual cortical organization. , 2002, Progress in brain research.

[50]  Joost X. Maier,et al.  Multisensory Integration of Dynamic Faces and Voices in Rhesus Monkey Auditory Cortex , 2005 .

[51]  C. Schroeder,et al.  A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. , 1998, Cerebral cortex.

[52]  W. Waleszczyk,et al.  Variability of Visual Responses of Superior Colliculus Neurons Depends on Stimulus Velocity , 2010, The Journal of Neuroscience.

[53]  I. Ohzawa,et al.  Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior. , 1987, Journal of neurophysiology.

[54]  Cristiana Cavina-Pratesi,et al.  Redundant target effect and intersensory facilitation from visual-tactile interactions in simple reaction time , 2002, Experimental Brain Research.

[55]  George L. Gerstein,et al.  Coordinated activity of neuron pairs in anesthetized rat dorsal cochlear nucleus , 1989, Brain Research.

[56]  G. Buzsáki,et al.  Interdependence of Multiple Theta Generators in the Hippocampus: a Partial Coherence Analysis , 1999, The Journal of Neuroscience.

[57]  Vyacheslav P. Tuzlukov,et al.  Signal detection theory , 2001 .

[58]  B. Stein,et al.  Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. , 1986, Journal of neurophysiology.

[59]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[60]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[61]  J. Palva,et al.  New vistas for alpha-frequency band oscillations. , 2007, Trends in neurosciences.

[62]  T. Stanford,et al.  Multisensory integration: current issues from the perspective of the single neuron , 2008, Nature Reviews Neuroscience.

[63]  H. Hughes,et al.  Spatial characteristics of visual-auditory summation in human saccades , 1998, Vision Research.

[64]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[65]  W. Newsome,et al.  Local Field Potential in Cortical Area MT: Stimulus Tuning and Behavioral Correlations , 2006, The Journal of Neuroscience.

[66]  Chris I. Baker,et al.  Integration of Visual and Auditory Information by Superior Temporal Sulcus Neurons Responsive to the Sight of Actions , 2005, Journal of Cognitive Neuroscience.

[67]  J. Gross,et al.  Sounds Reset Rhythms of Visual Cortex and Corresponding Human Visual Perception , 2012, Current Biology.

[68]  Jeffrey D. Schall,et al.  Relationship of presaccadic activity in frontal eye field and supplementary eye field to saccade initiation in macaque: Poisson spike train analysis , 2004, Experimental Brain Research.

[69]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[70]  A. Puce,et al.  Neuronal oscillations and visual amplification of speech , 2008, Trends in Cognitive Sciences.

[71]  G D Lewen,et al.  Reproducibility and Variability in Neural Spike Trains , 1997, Science.

[72]  Christopher R Fetsch,et al.  Neural correlates of reliability-based cue weighting during multisensory integration , 2011, Nature Neuroscience.

[73]  T. Poggio,et al.  Object Selectivity of Local Field Potentials and Spikes in the Macaque Inferior Temporal Cortex , 2006, Neuron.

[74]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[75]  M. Alex Meredith,et al.  Neurons and behavior: the same rules of multisensory integration apply , 1988, Brain Research.

[76]  Gregory C. DeAngelis,et al.  Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons , 2013, Nature Reviews Neuroscience.

[77]  Jos J. Eggermont,et al.  Correlated neural activity as the driving force for functional changes in auditory cortex , 2007, Hearing Research.

[78]  Tatiana Pasternak,et al.  Trial-to-trial variability of the prefrontal neurons reveals the nature of their engagement in a motion discrimination task , 2010, Proceedings of the National Academy of Sciences.

[79]  D. Snodderly,et al.  High response reliability of neurons in primary visual cortex (V1) of alert, trained monkeys. , 2006, Cerebral cortex.

[80]  Barry E Stein,et al.  Visual deprivation alters the development of cortical multisensory integration. , 2007, Journal of neurophysiology.

[81]  FRANK MORRELL,et al.  Visual System's View of Acoustic Space , 1972, Nature.

[82]  J. Lisman,et al.  Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer , 2005, Trends in Neurosciences.

[83]  A. von Stein,et al.  Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[84]  Mark T. Wallace,et al.  Spatial receptive field organization of multisensory neurons and its impact on multisensory interactions , 2009, Hearing Research.

[85]  Daniel N. Hill,et al.  Texture Coding in the Rat Whisker System: Slip-Stick Versus Differential Resonance , 2008, PLoS biology.

[86]  R. Shapley,et al.  LFP power spectra in V1 cortex: the graded effect of stimulus contrast. , 2005, Journal of neurophysiology.

[87]  A. Trevelyan The Direct Relationship between Inhibitory Currents and Local Field Potentials , 2009, The Journal of Neuroscience.

[88]  Walter J. Jermakowicz,et al.  Neural networks a century after Cajal , 2007, Brain Research Reviews.

[89]  K. Hoffmann,et al.  Synchronization of Neuronal Activity during Stimulus Expectation in a Direction Discrimination Task , 1997, The Journal of Neuroscience.

[90]  Jozsef Csicsvari,et al.  Homeostatic maintenance of neuronal excitability by burst discharges in vivo. , 2002, Cerebral cortex.

[91]  W. Freiwald,et al.  Coherent oscillatory activity in monkey area v4 predicts successful allocation of attention. , 2005, Cerebral cortex.

[92]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[93]  H. Kennedy,et al.  Anatomical Evidence of Multimodal Integration in Primate Striate Cortex , 2002, The Journal of Neuroscience.

[94]  K. Tamura,et al.  Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci U S A , 2001 .

[95]  W. Singer,et al.  Temporal coding in the visual cortex: new vistas on integration in the nervous system , 1992, Trends in Neurosciences.

[96]  砂田 憲吾,et al.  Bridging the gap between , 2009 .

[97]  J. Schall,et al.  Neural Control of Voluntary Movement Initiation , 1996, Science.

[98]  Ankoor S. Shah,et al.  Auditory Cortical Neurons Respond to Somatosensory Stimulation , 2003, The Journal of Neuroscience.

[99]  Stefano Panzeri,et al.  Visual Enhancement of the Information Representation in Auditory Cortex , 2010, Current Biology.

[100]  D. Kourtis,et al.  Neurophysiology of Implicit Timing in Serial Choice Reaction-Time Performance , 2006, The Journal of Neuroscience.

[101]  C. Spence,et al.  Multimodal visual–somatosensory integration in saccade generation , 2003, Neuropsychologia.

[102]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[103]  R. Romo,et al.  Correlated Neuronal Discharges that Increase Coding Efficiency during Perceptual Discrimination , 2003, Neuron.

[104]  M. Banks,et al.  Visual–Haptic Adaptation Is Determined by Relative Reliability , 2010, The Journal of Neuroscience.

[105]  W. Singer,et al.  Temporal binding and the neural correlates of sensory awareness , 2001, Trends in Cognitive Sciences.

[106]  C. Schroeder,et al.  Neuronal Oscillations and Multisensory Interaction in Primary Auditory Cortex , 2007, Neuron.

[107]  Matthias M. Müller,et al.  Modulation of induced gamma band activity in the human EEG by attention and visual information processing. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[108]  F. Ebner,et al.  Cross-Sensory Modulation of Primary Sensory Cortex Is Developmentally Regulated by Early Sensory Experience , 2011, The Journal of Neuroscience.

[109]  Brian L Allman,et al.  Subthreshold multisensory processing in cat auditory cortex , 2009, Neuroreport.

[110]  J. Movshon,et al.  The statistical reliability of signals in single neurons in cat and monkey visual cortex , 1983, Vision Research.

[111]  G. P. Moore,et al.  Neuronal spike trains and stochastic point processes. I. The single spike train. , 1967, Biophysical journal.

[112]  A. Pouget,et al.  Neural correlations, population coding and computation , 2006, Nature Reviews Neuroscience.

[113]  B. Knight,et al.  Response variability and timing precision of neuronal spike trains in vivo. , 1997, Journal of neurophysiology.

[114]  D. McCormick,et al.  Inhibitory Postsynaptic Potentials Carry Synchronized Frequency Information in Active Cortical Networks , 2005, Neuron.

[115]  M. Carandini,et al.  Local Origin of Field Potentials in Visual Cortex , 2009, Neuron.

[116]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[117]  David W. Royal,et al.  Spatial heterogeneity of cortical receptive fields and its impact on multisensory interactions. , 2008, Journal of neurophysiology.

[118]  Catherine Tallon-Baudry,et al.  Induced γ-Band Activity during the Delay of a Visual Short-Term Memory Task in Humans , 1998, The Journal of Neuroscience.

[119]  N. P. Bichot,et al.  Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. , 1996, Journal of neurophysiology.

[120]  A. Aertsen,et al.  Neuronal assemblies , 1989, IEEE Transactions on Biomedical Engineering.

[121]  H. Scheich,et al.  Nonauditory Events of a Behavioral Procedure Activate Auditory Cortex of Highly Trained Monkeys , 2005, The Journal of Neuroscience.

[122]  Ulrik R Beierholm,et al.  Sound-induced flash illusion as an optimal percept , 2005, Neuroreport.

[123]  S. Sherman,et al.  Receiver operating characteristic (ROC) analysis of neurons in the cat's lateral geniculate nucleus during tonic and burst response mode , 1995, Visual Neuroscience.

[124]  E. Niebur,et al.  Growth patterns in the developing brain detected by using continuum mechanical tensor maps , 2022 .

[125]  Arup Roy,et al.  Rate Limitations of Unitary Event Analysis , 2000, Neural Computation.

[126]  P. Reuter-Lorenz,et al.  Visual-auditory interactions in sensorimotor processing: saccades versus manual responses. , 1994, Journal of experimental psychology. Human perception and performance.

[127]  R. Desimone,et al.  The Effects of Visual Stimulation and Selective Visual Attention on Rhythmic Neuronal Synchronization in Macaque Area V4 , 2008, The Journal of Neuroscience.

[128]  Bijan Pesaran,et al.  Uncovering the Mysterious Origins of Local Field Potentials , 2009, Neuron.

[129]  Kathleen S Rockland,et al.  Multisensory convergence in calcarine visual areas in macaque monkey. , 2003, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[130]  J. Csicsvari,et al.  Mechanisms of Gamma Oscillations in the Hippocampus of the Behaving Rat , 2003, Neuron.

[131]  B. Stein,et al.  Interactions among converging sensory inputs in the superior colliculus. , 1983, Science.

[132]  Nikos K. Logothetis,et al.  The effect of a serotonin-induced dissociation between spiking and perisynaptic activity on BOLD functional MRI , 2008, Proceedings of the National Academy of Sciences.

[133]  R. Reid,et al.  Low Response Variability in Simultaneously Recorded Retinal, Thalamic, and Cortical Neurons , 2000, Neuron.

[134]  C. Nicholson,et al.  Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. , 1975, Journal of neurophysiology.

[135]  Andreas K. Engel,et al.  Temporal Binding, Binocular Rivalry, and Consciousness , 1999, Consciousness and Cognition.

[136]  R. Eckhorn,et al.  Perception-related modulations of local field potential power and coherence in primary visual cortex of awake monkey during binocular rivalry. , 2004, Cerebral cortex.

[137]  Emilio Salinas,et al.  Neurobiology: A chorus line , 2000, Nature.

[138]  U. Fano Ionization Yield of Radiations. II. The Fluctuations of the Number of Ions , 1947 .

[139]  Barry E Stein,et al.  Neuron-specific response characteristics predict the magnitude of multisensory integration. , 2003, Journal of neurophysiology.

[140]  Albert R. Powers,et al.  Perceptual Training Narrows the Temporal Window of Multisensory Binding , 2009, The Journal of Neuroscience.

[141]  Klas H. Pettersen,et al.  Modeling the Spatial Reach of the LFP , 2011, Neuron.

[142]  M. Wallace,et al.  Superior colliculus neurons use distinct operational modes in the integration of multisensory stimuli. , 2005, Journal of neurophysiology.

[143]  Mehdi Khamassi,et al.  Coherent Theta Oscillations and Reorganization of Spike Timing in the Hippocampal- Prefrontal Network upon Learning , 2010, Neuron.

[144]  J. Pernier,et al.  Stimulus Specificity of Phase-Locked and Non-Phase-Locked 40 Hz Visual Responses in Human , 1996, The Journal of Neuroscience.

[145]  U. Mitzdorf Properties of the evoked potential generators: current source-density analysis of visually evoked potentials in the cat cortex. , 1987, The International journal of neuroscience.

[146]  N. Logothetis,et al.  The Amplitude and Timing of the BOLD Signal Reflects the Relationship between Local Field Potential Power at Different Frequencies , 2012, The Journal of Neuroscience.

[147]  N. Logothetis What we can do and what we cannot do with fMRI , 2008, Nature.

[148]  A. Fort,et al.  Bimodal speech: early suppressive visual effects in human auditory cortex , 2004, The European journal of neuroscience.

[149]  G. P. Moore,et al.  Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. , 1967, Biophysical journal.

[150]  A J Van Opstal,et al.  Auditory-visual interactions subserving goal-directed saccades in a complex scene. , 2002, Journal of neurophysiology.

[151]  D P Munoz,et al.  The Influence of Auditory and Visual Distractors on Human Orienting Gaze Shifts , 1996, The Journal of Neuroscience.

[152]  B. Stein,et al.  Spatial factors determine the activity of multisensory neurons in cat superior colliculus , 1986, Brain Research.

[153]  Michael J. Berry,et al.  Refractoriness and Neural Precision , 1997, The Journal of Neuroscience.

[154]  S. Shimojo,et al.  Illusions: What you see is what you hear , 2000, Nature.

[155]  M. Wallace,et al.  Representation and integration of multiple sensory inputs in primate superior colliculus. , 1996, Journal of neurophysiology.

[156]  Christoph Kayser,et al.  Tuning to sound frequency in auditory field potentials. , 2007, Journal of neurophysiology.

[157]  K. Koepsell,et al.  Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies , 2010, Proceedings of the National Academy of Sciences.

[158]  G. Buzsáki,et al.  Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: Activity‐dependent phase‐precession of action potentials , 1998, Hippocampus.

[159]  C. Gray,et al.  Stimulus-Dependent Neuronal Oscillations and Local Synchronization in Striate Cortex of the Alert Cat , 1997, The Journal of Neuroscience.

[160]  C. Schroeder,et al.  Interpretation of high-resolution current source density profiles: a simulation of sublaminar contributions to the visual evoked potential , 1993, Experimental Brain Research.

[161]  Ankoor S. Shah,et al.  An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. , 2005, Journal of neurophysiology.

[162]  G. Laurent,et al.  Odour encoding by temporal sequences of firing in oscillating neural assemblies , 1996, Nature.

[163]  M A Meredith,et al.  Descending efferents from the superior colliculus relay integrated multisensory information. , 1985, Science.

[164]  W. Singer Synchronization of cortical activity and its putative role in information processing and learning. , 1993, Annual review of physiology.

[165]  U. Mitzdorf Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. , 1985, Physiological reviews.

[166]  C. Schroeder,et al.  Somatosensory input to auditory association cortex in the macaque monkey. , 2001, Journal of neurophysiology.

[167]  A. Ghazanfar,et al.  Is neocortex essentially multisensory? , 2006, Trends in Cognitive Sciences.

[168]  M. Giard,et al.  Auditory-Visual Integration during Multimodal Object Recognition in Humans: A Behavioral and Electrophysiological Study , 1999, Journal of Cognitive Neuroscience.

[169]  P König,et al.  Direct physiological evidence for scene segmentation by temporal coding. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[170]  J. Eggermont Between sound and perception: reviewing the search for a neural code , 2001, Hearing Research.

[171]  C. Schroeder,et al.  Low-frequency neuronal oscillations as instruments of sensory selection , 2009, Trends in Neurosciences.

[172]  W. Singer,et al.  Visuomotor integration is associated with zero time-lag synchronization among cortical areas , 1997, Nature.

[173]  John J. Foxe,et al.  Multisensory auditory-visual interactions during early sensory processing in humans: a high-density electrical mapping study. , 2002, Brain research. Cognitive brain research.

[174]  Hans Colonius,et al.  Visual-tactile spatial interaction in saccade generation , 2003, Experimental Brain Research.

[175]  N. Logothetis,et al.  Visual modulation of neurons in auditory cortex. , 2008, Cerebral cortex.

[176]  Stephane A. Roy,et al.  Pervasive synchronization of local neural networks in the secondary somatosensory cortex of cats during focal cutaneous stimulation , 2002, Experimental Brain Research.

[177]  C E Schreiner,et al.  Correlations between neural discharges are related to receptive field properties in cat primary auditory cortex , 1999, The European journal of neuroscience.

[178]  M. Livingstone Oscillatory firing and interneuronal correlations in squirrel monkey striate cortex. , 1996, Journal of neurophysiology.

[179]  David W. Royal,et al.  Spatiotemporal architecture of cortical receptive fields and its impact on multisensory interactions , 2009, Experimental Brain Research.

[180]  J. Eggermont Properties of correlated neural activity clusters in cat auditory cortex resemble those of neural assemblies. , 2006, Journal of neurophysiology.

[181]  Melanie R. Bernard,et al.  Widespread spatial integration in primary somatosensory cortex , 2008, Proceedings of the National Academy of Sciences.

[182]  B. Stein Superior colliculus-mediated visual behaviors in cat and the concept of two corticotectal systems. , 1988, Progress in brain research.

[183]  Christoph Kayser,et al.  Do early sensory cortices integrate cross-modal information? , 2007, Brain Structure and Function.

[184]  R. Desimone,et al.  High-Frequency, Long-Range Coupling Between Prefrontal and Visual Cortex During Attention , 2009, Science.

[185]  D. Burr,et al.  Combining visual and auditory information. , 2006, Progress in brain research.

[186]  R. Reid,et al.  Synchronous activity in the visual system. , 1999, Annual review of physiology.

[187]  S. Bressler,et al.  Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[188]  Nikos K. Logothetis,et al.  Local field potentials, BOLD and spiking activity: Relationships and physiological mechanisms , 2010 .

[189]  E. Niebur,et al.  Neural Correlates of High-Gamma Oscillations (60–200 Hz) in Macaque Local Field Potentials and Their Potential Implications in Electrocorticography , 2008, The Journal of Neuroscience.

[190]  Charles E. Schroeder,et al.  Dual Mechanism of Neuronal Ensemble Inhibition in Primary Auditory Cortex , 2011, Neuron.

[191]  N. Logothetis The Underpinnings of the BOLD Functional Magnetic Resonance Imaging Signal , 2003, The Journal of Neuroscience.

[192]  Charles M. Gray,et al.  Synchronous oscillations in neuronal systems: Mechanisms and functions , 1994, Journal of Computational Neuroscience.

[193]  G. Karmos,et al.  Entrainment of Neuronal Oscillations as a Mechanism of Attentional Selection , 2008, Science.

[194]  W. C. Hall,et al.  Superior Colliculus of the Tree Shrew: A Structural and Functional Subdivision into Superficial and Deep Layers , 1972, Science.

[195]  T. Hackett,et al.  Anatomical mechanisms and functional implications of multisensory convergence in early cortical processing. , 2003, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[196]  N. Birbaumer,et al.  Dynamics of gamma-band activity induced by auditory pattern changes in humans. , 2002, Cerebral cortex.

[197]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[198]  M T Wallace,et al.  Visual response properties and visuotopic representation in the newborn monkey superior colliculus. , 1997, Journal of neurophysiology.

[199]  M. Jones,et al.  Temporal Aspects of Stimulus-Driven Attending in Dynamic Arrays , 2002, Psychological science.

[200]  William R. Softky,et al.  Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. , 1996, Journal of neurophysiology.

[201]  M Steinschneider,et al.  Localization of ERP generators and identification of underlying neural processes. , 1995, Electroencephalography and clinical neurophysiology. Supplement.

[202]  Neil A. Macmillan,et al.  Detection Theory: A User's Guide , 1991 .

[203]  C. Schroeder,et al.  How Local Is the Local Field Potential? , 2011, Neuron.

[204]  John J. Foxe,et al.  Crossmodal binding through neural coherence: implications for multisensory processing , 2008, Trends in Neurosciences.

[205]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[206]  Mark A. Kramer,et al.  Drawing inferences from Fano factor calculations , 2010, Journal of Neuroscience Methods.

[207]  M. Ernst,et al.  Humans integrate visual and haptic information in a statistically optimal fashion , 2002, Nature.