Functional consequences of perturbing polyamine metabolism in the malaria parasite, Plasmodium falciparum

Inhibition of polyamine biosynthesis and/or the perturbation of polyamine functionality have been exploited with success against parasitic diseases such as Trypanosoma infections. However, when the classical polyamine biosynthesis inhibitor, α-difluoromethylornithine, is used against the human malaria parasite, Plasmodium falciparum, it results in only a cytostatic growth arrest. Polyamine metabolism in this parasite has unique properties not shared by any other organism. These include the bifunctional arrangement of the catalytic decarboxylases and an apparent absence of the typical polyamine interconversion pathways implying different mechanisms for the regulation of polyamine homeostasis that includes the uptake of exogenous polyamines at least in vitro. These properties make polyamine metabolism an enticing drug target in P. falciparum provided that the physiological and functional consequences of polyamine metabolism perturbation are understood. This review highlights our current understanding of the biological consequences of inhibition of the biosynthetic enzymes in the polyamine pathway in P. falciparum as revealed by several global analytical approaches. Ultimately, the evidence suggests that polyamine metabolism in P. falciparum is a validated drug target worth exploiting.

[1]  A. Hughes,et al.  A perspective of polyamine metabolism. , 2003, The Biochemical journal.

[2]  L. Marton,et al.  Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases , 2007, Nature Reviews Drug Discovery.

[3]  A. Gugliucci Polyamines as clinical laboratory tools. , 2004, Clinica chimica acta; international journal of clinical chemistry.

[4]  A. Kaiser,et al.  Effect of drugs inhibiting spermidine biosynthesis and metabolism on the in vitro development of Plasmodium falciparum , 2001, Parasitology Research.

[5]  M. Malaguarnera,et al.  Ornithine decarboxylase gene expression in Castleman's disease , 1999, Journal of Molecular Medicine.

[6]  Manuel Llinás,et al.  Co-inhibition of Plasmodium falciparum S-Adenosylmethionine Decarboxylase/Ornithine Decarboxylase Reveals Perturbation-specific Compensatory Mechanisms by Transcriptome, Proteome, and Metabolome Analyses* , 2009, Journal of Biological Chemistry.

[7]  M. Llinás,et al.  Exploring functional genomics for drug target and therapeutics discovery in Plasmodia. , 2008, Acta tropica.

[8]  M. Avery,et al.  Diamine derivatives with antiparasitic activities. , 2004, Bioorganic & medicinal chemistry letters.

[9]  S. Müller,et al.  The Plasmodium falciparum Bifunctional Ornithine Decarboxylase, S-Adenosyl-l-methionine Decarboxylase, Enables a Well Balanced Polyamine Synthesis without Domain-Domain Interaction* , 2001, The Journal of Biological Chemistry.

[10]  R. Madhubala,et al.  In the Human Malaria Parasite Plasmodium falciparum,Polyamines Are Synthesized by a Bifunctional Ornithine Decarboxylase,S-Adenosylmethionine Decarboxylase* , 2000, The Journal of Biological Chemistry.

[11]  K. Lüersen,et al.  The spermidine synthase of the malaria parasite Plasmodium falciparum: molecular and biochemical characterisation of the polyamine synthesis enzyme. , 2005, Molecular and biochemical parasitology.

[12]  S. Müller,et al.  The ornithine decarboxylase domain of the bifunctional ornithine decarboxylase/S-adenosylmethionine decarboxylase of Plasmodium falciparum: recombinant expression and catalytic properties of two different constructs. , 2000, The Biochemical journal.

[13]  A. Kaiser,et al.  Targeting enzymes involved in spermidine metabolism of parasitic protozoa—a possible new strategy for anti-parasitic treatment , 2003, Parasitology Research.

[14]  N. Seiler Catabolism of polyamines , 2004, Amino Acids.

[15]  F. Joubert,et al.  Comparative properties of a three‐dimensional model of Plasmodium falciparum ornithine decarboxylase , 2003, Proteins.

[16]  R. Madhubala,et al.  Combined action of inhibitors of polyamine biosynthetic pathway with a known antimalarial drug chloroquine on Plasmodium falciparum. , 1995, Pharmacological research.

[17]  S. Rahlfs,et al.  Identification of Proteins Targeted by the Thioredoxin Superfamily in Plasmodium falciparum , 2009, PLoS pathogens.

[18]  W. Wooster,et al.  Crystal structure of , 2005 .

[19]  L. Marton,et al.  Polyamines as targets for therapeutic intervention. , 1995, Annual review of pharmacology and toxicology.

[20]  K. Kleesiek,et al.  Human xylosyltransferase I: functional and biochemical characterization of cysteine residues required for enzymic activity. , 2005, The Biochemical journal.

[21]  J. Golenser,et al.  Polyamine levels and the activity of their biosynthetic enzymes in human erythrocytes infected with the malarial parasite, Plasmodium falciparum. , 1984, The Biochemical journal.

[22]  S. Müller,et al.  Targeting polyamines of parasitic protozoa in chemotherapy. , 2001, Trends in parasitology.

[23]  A. Bitonti,et al.  Bis(benzyl)polyamine analogs inhibit the growth of chloroquine-resistant human malaria parasites (Plasmodium falciparum) in vitro and in combination with alpha-difluoromethylornithine cure murine malaria. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Richard Paterson,et al.  Retrospect and Prospect , 1878, Nature.

[25]  B. Ullman,et al.  Polyamine biosynthetic enzymes as drug targets in parasitic protozoa. , 2003, Biochemical Society transactions.

[26]  K. Lüersen,et al.  Assessing the polyamine metabolism of Plasmodium falciparum as chemotherapeutic target. , 2008, Molecular and biochemical parasitology.

[27]  K. Kirk,et al.  Metabolite profiling of the intraerythrocytic malaria parasite Plasmodium falciparum by 1H NMR spectroscopy , 2009, NMR in biomedicine.

[28]  L. Birkholtz,et al.  Transcriptional responses of Plasmodium falciparum to α-difluoromethylornithine-induced polyamine depletion , 2008, Biological chemistry.

[29]  S. Puri,et al.  Characterization of Simian Malarial Parasite (Plasmodium knowlesi)-induced Putrescine Transport in Rhesus Monkey Erythrocytes , 1997, The Journal of Biological Chemistry.

[30]  H. Wallace,et al.  Polyamine analogues – an update , 2007, Amino Acids.

[31]  R. Montañez,et al.  Polyamines: metabolism to systems biology and beyond , 2007, Amino Acids.

[32]  Fourie Joubert,et al.  Parasite-specific inserts in the bifunctional S-adenosylmethionine decarboxylase/ornithine decarboxylase of Plasmodium falciparum modulate catalytic activities and domain interactions. , 2004, The Biochemical journal.

[33]  M. Park The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A). , 2006, Journal of biochemistry.

[34]  R. Altman,et al.  Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. , 2004, Genome research.

[35]  B. Metcalf,et al.  Catalytic irreversible inhibition of mammalian ornithine decarboxylase (E.C.4.1.1.17) by substrate and product analogs , 1978 .

[36]  I. Gilbert,et al.  Antiplasmodial activity of a series of 1,3,5-triazine-substituted polyamines. , 2003, The Journal of antimicrobial chemotherapy.

[37]  A. Bitonti,et al.  Plasmodium falciparum and Plasmodium berghei: effects of ornithine decarboxylase inhibitors on erythrocytic schizogony. , 1987, Experimental parasitology.

[38]  D. Mancama,et al.  Plasmodium falciparum spermidine synthase inhibition results in unique perturbation-specific effects observed on transcript, protein and metabolite levels , 2010, BMC Genomics.

[39]  R. D. Walter,et al.  Structural metal dependency of the arginase from the human malaria parasite Plasmodium falciparum , 2005, Biological chemistry.

[40]  Eva Liebau,et al.  Thiol-based redox metabolism of protozoan parasites. , 2003, Trends in parasitology.

[41]  A. Bitonti,et al.  Cure of murine Trypanosoma brucei rhodesiense infections with an S-adenosylmethionine decarboxylase inhibitor , 1992, Antimicrobial Agents and Chemotherapy.

[42]  O. Heby,et al.  Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas’ disease, and leishmaniasis , 2007, Amino Acids.

[43]  S. Reeksting Metabolomic analyses of the malaria parasite after inhibition of polyamine biosynthesis , 2009 .

[44]  A. Bitonti,et al.  Irreversible inhibition of S-adenosylmethionine decarboxylase in Plasmodium falciparum-infected erythrocytes: growth inhibition in vitro. , 1991, Biochemical pharmacology.

[45]  J. Golenser,et al.  Cytostatic effect of DL-α-difluoromethylornithine against Plasmodium falciparum and its reversal by diamines and spermidine , 2004, Parasitology Research.

[46]  M. Grillo,et al.  S-adenosylmethionine and its products , 2008, Amino Acids.

[47]  Fourie Joubert,et al.  Novel properties of malarial S-adenosylmethionine decarboxylase as revealed by structural modelling. , 2006, Journal of molecular graphics & modelling.

[48]  S. Choi,et al.  Lysine Decarboxylase Expression by Vibrio vulnificus Is Induced by SoxR in Response to Superoxide Stress , 2006, Journal of bacteriology.

[49]  A. Bitonti,et al.  Antitrypanosomal effects of polyamine biosynthesis inhibitors correlate with increases in Trypanosoma brucei brucei S-adenosyl-L-methionine. , 1991, The Biochemical journal.

[50]  S. Müller,et al.  Concentrations Decreasing Intracellular Polyamine by Plasmodium falciparum on Cultured Derivatives Have an Antiproliferative Effect 3-Aminooxy-1-Aminopropane and , 2005 .

[51]  N. Seiler,et al.  Thirty years of polyamine-related approaches to cancer therapy. Retrospect and prospect. Part 2. Structural analogues and derivatives. , 2003, Current drug targets.

[52]  J. Golenser,et al.  Plasmodium falciparum: synchronization of cultures with DL-alpha-difluoromethylornithine, an inhibitor of polyamine biosynthesis. , 1986, Experimental parasitology.

[53]  F. Joubert,et al.  Antimalarial drug discovery: in silico structural biology and rational drug design. , 2009, Infectious disorders drug targets.

[54]  N. Khardori Host-parasite interaction in fungal infections , 1989, European Journal of Clinical Microbiology and Infectious Diseases.

[55]  N. Seiler,et al.  Thirty years of polyamine-related approaches to cancer therapy. Retrospect and prospect. Part 1. Selective enzyme inhibitors. , 2003, Current drug targets.

[56]  A. Fairlamb,et al.  Ornithine Decarboxylase Gene Deletion Mutants of Leishmania donovani * , 1999, The Journal of Biological Chemistry.

[57]  Kellen L. Olszewski,et al.  Host-parasite interactions revealed by Plasmodium falciparum metabolomics. , 2009, Cell host & microbe.

[58]  Van Brummelen,et al.  Functional genomics analysis of the effects of co-inhibition of the malarial S-adenosylmethionine decarboxylase/ornithine decarboxylase , 2009 .

[59]  R. D. Walter,et al.  Crystal structure of Plasmodium falciparum spermidine synthase in complex with the substrate decarboxylated S-adenosylmethionine and the potent inhibitors 4MCHA and AdoDATO. , 2007, Journal of molecular biology.

[60]  S. Ito,et al.  Prevention of ornithine cytotoxicity by proline in human retinal pigment epithelial cells. , 1998, Investigative ophthalmology & visual science.

[61]  R. D. Walter,et al.  Structural and mechanistic insights into the action of Plasmodium falciparum spermidine synthase. , 2007, Bioorganic & medicinal chemistry.

[62]  P. McCann,et al.  Plasmodium berghei: inhibitors of ornithine decarboxylase block exoerythrocytic schizogony. , 1985, Experimental parasitology.

[63]  A. Gamarnik,et al.  Cadaverine, an Essential Diamine for the Normal Root Development of Germinating Soybean (Glycine max) Seeds. , 1991, Plant physiology.

[64]  J. Charlier,et al.  Plasmodium berghei: inhibition of the sporogonous cycle by alpha-difluoromethylornithine. , 1983, Experimental parasitology.