Utility Models for Goal‐Directed, Decision‐Theoretic Planners

AI planning agents are goal‐directed: success is measured in terms of whether an input goal is satisfied. The goal gives structure to the planning problem, and planning representations and algorithms have been designed to exploit that structure. Strict goal satisfaction may be an unacceptably restrictive measure of good behavior, however.

[1]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[2]  Ronald A. Howard,et al.  Dynamic Programming and Markov Processes , 1960 .

[3]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[4]  Earl D. Sacerdoti,et al.  Planning in a Hierarchy of Abstraction Spaces , 1974, IJCAI.

[5]  David E. Bell,et al.  A Decision Analysis of Objectives for a Forest Pest Problem , 1975 .

[6]  Ralph L. Keeney,et al.  Decisions with multiple objectives: preferences and value tradeoffs , 1976 .

[7]  Jerome A. Feldman,et al.  Decision Theory and Artificial Intelligence II: The Hungry Monkey , 1977, Cogn. Sci..

[8]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[9]  D. Bunn Stochastic Dominance , 1979 .

[10]  Anthony N. S. Freeling Fuzzy Sets and Decision Analysis , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  D. McDermott A Temporal Logic for Reasoning About Processes and Plans , 1982, Cogn. Sci..

[12]  Drew McDermott,et al.  A Temporal Logic for Reasoning About Processes and Plans , 1982, Cogn. Sci..

[13]  Steven A. Vere,et al.  Planning in Time: Windows and Durations for Activities and Goals , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Hans-Jürgen Zimmermann,et al.  Fuzzy sets and decision analysis , 1984 .

[15]  H. Brachinger,et al.  Decision analysis , 1997 .

[16]  Dana Nau,et al.  Hierarchical Abstraction for Process Planning. , 1987 .

[17]  Michael P. Wellman Formulation of tradeoffs in planning under uncertainty , 1988 .

[18]  Arthur M. Farley,et al.  Plan Abstraction Based on Operator Generalization , 1988, AAAI.

[19]  David P. Miller,et al.  Hierarchical planning involving deadlines, travel time, and resources , 1988, Comput. Intell..

[20]  Eric Horvitz,et al.  Reflection and Action Under Scarce Resources: Theoretical Principles and Empirical Study , 1989, IJCAI.

[21]  Robert James Firby,et al.  Adaptive execution in complex dynamic worlds , 1989 .

[22]  Thomas L. Dean,et al.  A Model for Projection and Action , 1989, IJCAI.

[23]  Mark Drummond,et al.  Situated Control Rules , 1989, KR.

[24]  E. Horvitz,et al.  Reeection and Action under Scarce Resources: Theoretical Principles and Empirical Study 1 Reeection and Flexibility 2 Decision-theoretic Valuation , 1989 .

[25]  Drew V. Mcdermott,et al.  Projecting plans for uncertain worlds , 1990 .

[26]  Steve Hanks,et al.  Practical Temporal Projection , 1990, AAAI.

[27]  Jon Doyle,et al.  Preferential Semantics for Goals , 1991, AAAI.

[28]  Mark S. Boddy,et al.  Solving Time-Dependent Problems: A Decision-Theoretic Approach to Planning in Dynamic Environments , 1991 .

[29]  Oren Etzioni,et al.  Embedding Decision-Analytic Control in a Learning Architecture , 1991, Artif. Intell..

[30]  Henry A. Kautz,et al.  Reasoning about plans , 1991, Morgan Kaufmann series in representation and reasoning.

[31]  Stuart J. Russell,et al.  Do the right thing - studies in limited rationality , 1991 .

[32]  Stuart J. Russell,et al.  Principles of Metareasoning , 1989, Artif. Intell..

[33]  Peter Haddawy,et al.  A Temporal Probability Logic for Representing Actions , 1991, KR.

[34]  Sven Koenig,et al.  Optimal Probabilistic and Decision-Theoretic Planning using Markovian , 1992 .

[35]  Jon Doyle,et al.  Modular utility representation for decision-theoretic planning , 1992 .

[36]  Daniel S. Weld,et al.  UCPOP: A Sound, Complete, Partial Order Planner for ADL , 1992, KR.

[37]  Leslie Pack Kaelbling,et al.  Planning With Deadlines in Stochastic Domains , 1993, AAAI.

[38]  F. B. Vernadat,et al.  Decisions with Multiple Objectives: Preferences and Value Tradeoffs , 1994 .

[39]  Craig Boutilier,et al.  Using Abstractions for Decision-Theoretic Planning with Time Constraints , 1994, AAAI.

[40]  J. Carbonell,et al.  Representing Plans Under Uncertainty: A Logic of Time, Chance, and Action , 1994 .

[41]  Stuart J. Russell,et al.  Control Strategies for a Stochastic Planner , 1994, AAAI.

[42]  Steve Hanks,et al.  Optimal Planning with a Goal-directed Utility Model , 1994, AIPS.

[43]  Peter Haddawy,et al.  Decision-theoretic Refinement Planning Using Inheritance Abstraction , 1994, AIPS.

[44]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[45]  Drew McDermott,et al.  Modeling a Dynamic and Uncertain World I: Symbolic and Probabilistic Reasoning About Change , 1994, Artif. Intell..

[46]  Nicholas Kushmerick,et al.  An Algorithm for Probabilistic Planning , 1995, Artif. Intell..

[47]  Craig Boutilier,et al.  Process-Oriented Planning and Average-Reward Optimality , 1995, IJCAI.

[48]  Thomas Dean,et al.  Decomposition Techniques for Planning in Stochastic Domains , 1995, IJCAI.

[49]  Stuart J. Russell,et al.  Approximating Optimal Policies for Partially Observable Stochastic Domains , 1995, IJCAI.

[50]  Peter Haddawy,et al.  Efficient Decision-Theoretic Planning: Techniques and Empirical Analysis , 1995, UAI.

[51]  Leslie Pack Kaelbling,et al.  Learning Policies for Partially Observable Environments: Scaling Up , 1997, ICML.

[52]  Craig Boutilier,et al.  Exploiting Structure in Policy Construction , 1995, IJCAI.

[53]  Maria Alicia Perez Learning search control knowledge to improve plan quality , 1996 .

[54]  P. Haddawy,et al.  Decision-theoretic Refinement Planning in Medical Decision Making , 1996, Medical decision making : an international journal of the Society for Medical Decision Making.

[55]  Peter Haddawy,et al.  Sound Abstraction of Probabilistic Actions in The Constraint Mass Assignment Framework , 1996, UAI.

[56]  Craig Boutilier,et al.  Computing Optimal Policies for Partially Observable Decision Processes Using Compact Representations , 1996, AAAI/IAAI, Vol. 2.

[57]  S. Hanks,et al.  A value-directed approach to planning , 1996 .

[58]  Steve Hanks,et al.  Flaw Selection Strategies for Value-Directed Planning , 1996, AIPS.

[59]  Witold Lukaszewicz,et al.  Reasoning about Plans , 1997, IJCAI.

[60]  Craig Boutilier,et al.  Decision-Theoretic Planning: Structural Assumptions and Computational Leverage , 1999, J. Artif. Intell. Res..