Równoległa meta2heurystyka dla problemu gniazdowego z równoległymi maszynami

[1]  E. Nowicki,et al.  A fast tabu search algorithm for the permutation flow-shop problem , 1996 .

[2]  Michael Pinedo,et al.  Scheduling: Theory, Algorithms, and Systems , 1994 .

[3]  Mitsuo Gen,et al.  A hybrid genetic and variable neighborhood descent algorithm for flexible job shop scheduling problems , 2008, Comput. Oper. Res..

[4]  Nhu Binh Ho,et al.  GENACE: an efficient cultural algorithm for solving the flexible job-shop problem , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[5]  Jan Paulli,et al.  A hierarchical approach for the FMS scheduling problem , 1995 .

[6]  F. Pezzella,et al.  A genetic algorithm for the Flexible Job-shop Scheduling Problem , 2008, Comput. Oper. Res..

[7]  Pierre Borne,et al.  Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems , 2002, IEEE Trans. Syst. Man Cybern. Part C.

[8]  Luca Maria Gambardella,et al.  Effective Neighborhood Functions for the Flexible Job Shop Problem , 1998 .

[9]  Stéphane Dauzère-Pérès,et al.  An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search , 1997, Ann. Oper. Res..

[10]  Johann L. Hurink,et al.  Tabu search for the job-shop scheduling problem with multi-purpose machines , 1994 .

[11]  Andrew Y. C. Nee,et al.  A modified genetic algorithm for distributed scheduling problems , 2003, J. Intell. Manuf..

[12]  Andrzej Adrabiński,et al.  Algorithm 66 - An algorithm for solving the machine sequencing problem with parallel machines , 1979 .

[13]  Enrique Alba,et al.  Parallel Metaheuristics: A New Class of Algorithms , 2005 .

[14]  Paolo Brandimarte,et al.  Routing and scheduling in a flexible job shop by tabu search , 1993, Ann. Oper. Res..