Internal bias field relaxation in poled Mn-doped Pb(Mn1/3Sb2/3)O3–Pb(Zr,Ti)O3 ceramics

[1]  D. Viehland,et al.  Aging associated domain evolution in the orthorhombic phase of 〈001〉 textured (K0.5Na0.5)Nb0.97Sb0.03O3 ceramics , 2011, 1112.3418.

[2]  Jingfeng Li,et al.  Enhancement of Qm in CuO-doped compositionally optimized Li/Ta-modified (Na,K)NbO3 lead-free piezoceramics , 2012 .

[3]  Dragan Damjanovic,et al.  Position of defects with respect to domain walls in Fe3+-doped Pb[Zr0.52Ti0.48]O3 piezoelectric ceramics , 2011 .

[4]  M. Kosec,et al.  Strong ferroelectric domain-wall pinning in BiFeO3 ceramics , 2010 .

[5]  Zhuo Xu,et al.  Temperature- and dc bias field- dependent piezoelectric effect of soft and hard lead zirconate titanate ceramics , 2010 .

[6]  Q. Yin,et al.  The influence of Yb and Nd substituents on high-power piezoelectric properties of PMS-PZT ceramics , 2008 .

[7]  Haosu Luo,et al.  Aging-induced giant recoverable electrostrain in Fe-doped 0.62Pb(Mg1∕3Nb2∕3)O3–0.38PbTiO3 single crystals , 2008 .

[8]  T. Kamel Poling of hard ferroelectric PZT ceramics , 2008 .

[9]  Zuyong Feng,et al.  Aging effect and large recoverable electrostrain in Mn-doped KNbO3-based ferroelectrics , 2007 .

[10]  A. Ngamjarurojana,et al.  Temperature scaling of ferroelectric hysteresis in hard lead zirconate titanate bulk ceramic , 2007 .

[11]  K. Uchino,et al.  Domain wall release in “hard” piezoelectric under continuous large amplitude ac excitation , 2007 .

[12]  H. Chan,et al.  Double hysteresis loop in Cu-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics , 2007 .

[13]  J. Rödel,et al.  Fatigue of Lead Zirconate Titanate Ceramics. I: Unipolar and DC Loading , 2007 .

[14]  K. Uchino,et al.  Effects of thermal and electrical histories on hard piezoelectrics: A comparison of internal dipolar fields and external dc bias , 2007 .

[15]  X. Ren,et al.  Aging behavior in single-domain Mn-doped BaTiO 3 crystals: Implication for a unified microscopic explanation of ferroelectric aging , 2006 .

[16]  D. Guyomar,et al.  Effects of Zr/Ti ratio on structural, dielectric and piezoelectric properties of Mn- and (Mn, F)-doped lead zirconate titanate ceramics , 2006 .

[17]  Q. R. Yin,et al.  Effect of PMS modification on dielectric and piezoelectric properties in xPMS–(1 − x)PZT ceramics , 2005 .

[18]  W. Cao,et al.  Pinning and depinning mechanism of defect dipoles in PMnN–PZT ceramics , 2005 .

[19]  S. Qu,et al.  The effect of composition on microstructure and properties of PNW–PMS–PZT ceramics for high-power piezoelectric transformer , 2005 .

[20]  F. Gao,et al.  Effect of MnO2 Addition on the Structure and Electrical Properties of Pb(Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80O3 Ceramics , 2004 .

[21]  Xiaobing Ren,et al.  Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching , 2004, Nature materials.

[22]  J. Rino,et al.  90° domain wall relaxation and frequency dependence of the coercive field in the ferroelectric switching process , 2003, cond-mat/0311162.

[23]  Lian-Xing He,et al.  Effects of addition of MnO on piezoelectric properties of lead zirconate titanate , 2000 .

[24]  D. Viehland,et al.  Role of lower valent substituent-oxygen vacancy complexes in polarization pinning in potassium-modified lead zirconate titanate , 1999 .

[25]  Dragan Damjanovic,et al.  FERROELECTRIC, DIELECTRIC AND PIEZOELECTRIC PROPERTIES OF FERROELECTRIC THIN FILMS AND CERAMICS , 1998 .

[26]  Zhengkui Xu,et al.  Role of defect distributions and mobility on ferroelectric phase transformations in lead zirconate titanate , 1997 .

[27]  G. Arlt,et al.  Domain wall clamping in ferroelectrics by orientation of defects , 1993 .

[28]  P. Lambeck,et al.  The nature of domain stabilization in ferroelectric perovskites , 1986 .

[29]  Sadayuki Takahashi,et al.  Effects of impurity doping in lead zirconate-titanate ceramics , 1982 .

[30]  K. H. Hardtl,et al.  Electrical after-effects in Pb(Ti, Zr)O3 ceramics , 1977 .